
26 Parallel Algorithms

The vast majority of algorithms in this book are serial algorithms suitable for run-

ning on a uniprocessor computer that executes only one instruction at a time. This

chapter extends our algorithmic model to encompass parallel algorithms, where

multiple instructions can execute simultaneously. Specifically, we’ll explore the

elegant model of task-parallel algorithms, which are amenable to algorithmic de-

sign and analysis. Our study focuses on fork-join parallel algorithms, the most

basic and best understood kind of task-parallel algorithm. Fork-join parallel al-

gorithms can be expressed cleanly using simple linguistic extensions to ordinary

serial code. Moreover, they can be implemented efficiently in practice.

Parallel computers—computers with multiple processing units—are ubiquitous.

Handheld, laptop, desktop, and cloud machines are all multicore computers, or

simply, multicores, containing multiple processing “cores.” Each processing core

is a full-fledged processor that can directly access any location in a common shared

memory. Multicores can be aggregated into larger systems, such as clusters, by

using a network to interconnect them. These multicore clusters usually have a dis-

tributed memory, where one multicore’s memory cannot be accessed directly by a

processor in another multicore. Instead, the processor must explicitly send a mes-

sage over the cluster network to a processor in the remote multicore to request any

data it requires. The most powerful clusters are supercomputers, comprising many

thousands of multicores. But since shared-memory programming tends to be con-

ceptually easier than distributed-memory programming, and multicore machines

are widely available, this chapter focuses on parallel algorithms for multicores.

One approach to programming multicores is thread parallelism. This processor-

centric parallel-programming model employs a software abstraction of “virtual

processors,” or threads that share a common memory. Each thread maintains its

own program counter and can execute code independently of the other threads. The

operating system loads a thread onto a processing core for execution and switches

it out when another thread needs to run.

Chapter 26 Parallel Algorithms 749

Unfortunately, programming a shared-memory parallel computer using threads

tends to be difficult and error-prone. One reason is that it can be complicated

to dynamically partition the work among the threads so that each thread receives

approximately the same load. For any but the simplest of applications, the pro-

grammer must use complex communication protocols to implement a scheduler

that load-balances the work.

Task-parallel programming

The difficulty of thread programming has led to the creation of task-parallel plat-

forms, which provide a layer of software on top of threads to coordinate, schedule,

and manage the processors of a multicore. Some task-parallel platforms are built as

runtime libraries, but others provide full-fledged parallel languages with compiler

and runtime support.

Task-parallel programming allows parallelism to be specified in a “processor-

oblivious” fashion, where the programmer identifies what computational tasks may

run in parallel but does not indicate which thread or processor performs the task.

Thus, the programmer is freed from worrying about communication protocols, load

balancing, and other vagaries of thread programming. The task-parallel platform

contains a scheduler, which automatically load-balances the tasks across the pro-

cessors, thereby greatly simplifying the programmer’s chore. Task-parallel algo-

rithms provide a natural extension to ordinary serial algorithms, allowing perfor-

mance to be reasoned about mathematically using “work/span analysis.”

Fork-join parallelism

Although the functionality of task-parallel environments is still evolving and in-

creasing, almost all support fork-join parallelism, which is typically embodied

in two linguistic features: spawning and parallel loops. Spawning allows a sub-

routine to be “forked”: executed like a subroutine call, except that the caller can

continue to execute while the spawned subroutine computes its result. A parallel

loop is like an ordinary for loop, except that multiple iterations of the loop can

execute at the same time.

Fork-join parallel algorithms employ spawning and parallel loops to describe

parallelism. A key aspect of this parallel model, inherited from the task-parallel

model but different from the thread model, is that the programmer does not specify

which tasks in a computation must run in parallel, only which tasks may run in

parallel. The underlying runtime system uses threads to load-balance the tasks

across the processors. This chapter investigates parallel algorithms described in

the fork-join model, as well as how the underlying runtime system can schedule

task-parallel computations (which include fork-join computations) efficiently.

750 Chapter 26 Parallel Algorithms

Fork-join parallelism offers several important advantages:

� The fork-join programming model is a simple extension of the familiar serial

programming model used in most of this book. To describe a fork-join par-

allel algorithm, the pseudocode in this book needs just three added keywords:

parallel, spawn, and sync. Deleting these parallel keywords from the parallel

pseudocode results in ordinary serial pseudocode for the same problem, which

we call the “serial projection” of the parallel algorithm.

� The underlying task-parallel model provides a theoretically clean way to quan-

tify parallelism based on the notions of “work” and “span.”

� Spawning allows many divide-and-conquer algorithms to be parallelized natu-

rally. Moreover, just as serial divide-and-conquer algorithms lend themselves

to analysis using recurrences, so do parallel algorithms in the fork-join model.

� The fork-join programming model is faithful to how multicore programming

has been evolving in practice. A growing number of multicore environments

support one variant or another of fork-join parallel programming, including

Cilk [290, 291, 383, 396], Habanero-Java [466], the Java Fork-Join Framework

[279], OpenMP [81], Task Parallel Library [289], Threading Building Blocks

[376], and X10 [82].

Section 26.1 introduces parallel pseudocode, shows how the execution of a task-

parallel computation can be modeled as a directed acyclic graph, and presents the

metrics of work, span, and parallelism, which you can use to analyze parallel al-

gorithms. Section 26.2 investigates how to multiply matrices in parallel, and Sec-

tion 26.3 tackles the tougher problem of designing an efficient parallel merge sort.

26.1 The basics of fork-join parallelism

Our exploration of parallel programming begins with the problem of computing

Fibonacci numbers recursively in parallel. We’ll look at a straightforward serial

Fibonacci calculation, which, although inefficient, serves as a good illustration of

how to express parallelism in pseudocode.

Recall that the Fibonacci numbers are defined by equation (3.31) on page 69:

Fi D

�
0 if i D 0 ;

1 if i D 1 ;

Fi�1 C Fi�2 if i � 2 :

To calculate the nth Fibonacci number recursively, you could use the ordinary serial

algorithm in the procedure FIB on the facing page. You would not really want to

26.1 The basics of fork-join parallelism 751

compute large Fibonacci numbers this way, because this computation does needless

repeated work, but parallelizing it can be instructive.

FIB.n/

1 if n � 1

2 return n

3 else x D FIB.n � 1/

4 y D FIB.n � 2/

5 return x C y

To analyze this algorithm, let T .n/ denote the running time of FIB.n/. Since

FIB.n/ contains two recursive calls plus a constant amount of extra work, we obtain

the recurrence

T .n/ D T .n � 1/ C T .n � 2/ C ‚.1/ :

This recurrence has solution T .n/ D ‚.Fn/, which we can establish by using the

substitution method (see Section 4.3). To show that T .n/ D O.Fn/, we’ll adopt the

inductive hypothesis that T .n/ � aFn � b, where a > 1 and b > 0 are constants.

Substituting, we obtain

T .n/ � .aFn�1 � b/ C .aFn�2 � b/ C ‚.1/

D a.Fn�1 C Fn�2/ � 2b C ‚.1/

� aFn � b ;

if we choose b large enough to dominate the upper-bound constant in the ‚.1/

term. We can then choose a large enough to upper-bound the ‚.1/ base case

for small n. To show that T .n/ D �.Fn/, we use the inductive hypothesis

T .n/ � aFn � b. Substituting and following reasoning similar to the asymptotic

upper-bound argument, we establish this hypothesis by choosing b smaller than

the lower-bound constant in the ‚.1/ term and a small enough to lower-bound

the ‚.1/ base case for small n. Theorem 3.1 on page 56 then establishes that

T .n/ D ‚.Fn/, as desired. Since Fn D ‚.�n/, where � D .1 C
p

5/=2 is the

golden ratio, by equation (3.34) on page 69, it follows that

T .n/ D ‚.�n/ : (26.1)

Thus this procedure is a particularly slow way to compute Fibonacci numbers,

since it runs in exponential time. (See Problem 31-3 on page 954 for faster ways.)

Let’s see why the algorithm is inefficient. Figure 26.1 shows the tree of recursive

procedure instances created when computing F6 with the FIB procedure. The call

to FIB.6/ recursively calls FIB.5/ and then FIB.4/. But, the call to FIB.5/ also

752 Chapter 26 Parallel Algorithms

FIB.0/

FIB.0/FIB.0/FIB.0/

FIB.0/

FIB.1/FIB.1/

FIB.1/

FIB.1/

FIB.1/FIB.1/FIB.1/

FIB.1/

FIB.2/

FIB.2/FIB.2/FIB.2/

FIB.2/

FIB.3/FIB.3/

FIB.3/

FIB.4/

FIB.4/

FIB.5/

FIB.6/

Figure 26.1 The invocation tree for FIB.6/. Each node in the tree represents a procedure instance

whose children are the procedure instances it calls during its execution. Since each instance of FIB

with the same argument does the same work to produce the same result, the inefficiency of this

algorithm for computing the Fibonacci numbers can be seen by the vast number of repeated calls

to compute the same thing. The portion of the tree shaded blue appears in task-parallel form in

Figure 26.2.

results in a call to FIB.4/. Both instances of FIB.4/ return the same result (F4 D 3).

Since the FIB procedure does not memoize (recall the definition of “memoize”

from page 368), the second call to FIB.4/ replicates the work that the first call

performs, which is wasteful.

Although the FIB procedure is a poor way to compute Fibonacci numbers, it

can help us warm up to parallelism concepts. Perhaps the most basic concept is

to understand is that if two parallel tasks operate on entirely different data, then—

absent other interference—they each produce the same outcomes when executed

at the same time as when they run serially one after the other. Within FIB.n/, for

example, the two recursive calls in line 3 to FIB.n � 1/ and in line 4 to FIB.n � 2/

can safely execute in parallel because the computation performed by one in no way

affects the other.

Parallel keywords

The P-FIB procedure on the next page computes Fibonacci numbers, but using the

parallel keywords spawn and sync to indicate parallelism in the pseudocode.

If the keywords spawn and sync are deleted from P-FIB, the resulting pseu-

docode text is identical to FIB (other than renaming the procedure in the header

26.1 The basics of fork-join parallelism 753

P-FIB.n/

1 if n � 1

2 return n

3 else x D spawn P-FIB.n � 1/ // don’t wait for subroutine to return

4 y D P-FIB.n � 2/ // in parallel with spawned subroutine

5 sync // wait for spawned subroutine to finish

6 return x C y

and in the two recursive calls). We define the serial projection1 of a parallel al-

gorithm to be the serial algorithm that results from ignoring the parallel directives,

which in this case can be done by omitting the keywords spawn and sync. For

parallel for loops, which we’ll see later on, we omit the keyword parallel. Indeed,

our parallel pseudocode possesses the elegant property that its serial projection is

always ordinary serial pseudocode to solve the same problem.

Semantics of parallel keywords

Spawning occurs when the keyword spawn precedes a procedure call, as in line 3

of P-FIB. The semantics of a spawn differs from an ordinary procedure call in

that the procedure instance that executes the spawn—the parent—may continue

to execute in parallel with the spawned subroutine—its child—instead of waiting

for the child to finish, as would happen in a serial execution. In this case, while

the spawned child is computing P-FIB.n � 1/, the parent may go on to compute

P-FIB.n�2/ in line 4 in parallel with the spawned child. Since the P-FIB procedure

is recursive, these two subroutine calls themselves create nested parallelism, as

do their children, thereby creating a potentially vast tree of subcomputations, all

executing in parallel.

The keyword spawn does not say, however, that a procedure must execute in

parallel with its spawned children, only that it may. The parallel keywords express

the logical parallelism of the computation, indicating which parts of the compu-

tation may proceed in parallel. At runtime, it is up to a scheduler to determine

which subcomputations actually run in parallel by assigning them to available pro-

1 In mathematics, a projection is an idempotent function, that is, a function f such that f ı f D f .

In this case, the function f maps the set P of fork-join programs to the set PS � P of serial

programs, which are themselves fork-join programs with no parallelism. For a fork-join program

x 2 P , since we have f .f .x// D f .x/, the serial projection, as we have defined it, is indeed a

mathematical projection.

754 Chapter 26 Parallel Algorithms

cessors as the computation unfolds. We’ll discuss the theory behind task-parallel

schedulers shortly (on page 759).

A procedure cannot safely use the values returned by its spawned children un-

til after it executes a sync statement, as in line 5. The keyword sync indicates

that the procedure must wait as necessary for all its spawned children to finish be-

fore proceeding to the statement after the sync—the “join” of a fork-join parallel

computation. The P-FIB procedure requires a sync before the return statement

in line 6 to avoid the anomaly that would occur if x and y were summed before

P-FIB.n � 1/ had finished and its return value had been assigned to x. In addition

to explicit join synchronization provided by the sync statement, it is convenient

to assume that every procedure executes a sync implicitly before it returns, thus

ensuring that all children finish before their parent finishes.

A graph model for parallel execution

It helps to view the execution of a parallel computation—the dynamic stream of

runtime instructions executed by processors under the direction of a parallel pro-

gram—as a directed acyclic graph G D .V; E/, called a (parallel) trace.2 Con-

ceptually, the vertices in V are executed instructions, and the edges in E represent

dependencies between instructions, where .u; v/ 2 E means that the parallel pro-

gram required instruction u to execute before instruction v.

It’s sometimes inconvenient, especially if we want to focus on the parallel struc-

ture of a computation, for a vertex of a trace to represent only one executed instruc-

tion. Consequently, if a chain of instructions contains no parallel or procedural

control (no spawn, sync, procedure call, or return—via either an explicit return

statement or the return that happens implicitly upon reaching the end of a proce-

dure), we group the entire chain into a single strand. As an example, Figure 26.2

shows the trace that results from computing P-FIB.4/ in the portion of Figure 26.1

shaded blue. Strands do not include instructions that involve parallel or procedural

control. These control dependencies must be represented as edges in the trace.

When a parent procedure calls a child, the trace contains an edge .u; v/ from

the strand u in the parent that executes the call to the first strand v of the spawned

child, as illustrated in Figure 26.2 by the edge from the orange strand in P-FIB.4/

to the blue strand in P-FIB.2/. When the last strand v0 in the child returns, the trace

contains an edge .v0; u0/ to the strand u0, where u0 is the successor strand of u in

the parent, as with the edge from the white strand in P-FIB.2/ to the white strand

in P-FIB.4/.

2 Also called a computation dag in the literature.

26.1 The basics of fork-join parallelism 755

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)

Figure 26.2 The trace of P-FIB.4/ corresponding to the shaded portion of Figure 26.1. Each

circle represents one strand, with blue circles representing any instructions executed in the part of

the procedure (instance) up to the spawn of P-FIB.n � 1/ in line 3; orange circles representing the

instructions executed in the part of the procedure that calls P-FIB.n � 2/ in line 4 up to the sync in

line 5, where it suspends until the spawn of P-FIB.n � 1/ returns; and white circles representing the

instructions executed in the part of the procedure after the sync, where it sums x and y, up to the

point where it returns the result. Strands belonging to the same procedure are grouped into a rounded

rectangle, blue for spawned procedures and tan for called procedures. Assuming that each strand

takes unit time, the work is 17 time units, since there are 17 strands, and the span is 8 time units,

since the critical path—shown with blue edges—contains 8 strands.

When the parent spawns a child, however, the trace is a little different. The

edge .u; v/ goes from parent to child as with a call, such as the edge from the blue

strand in P-FIB.4/ to the blue strand in P-FIB.3/, but the trace contains another

edge .u; u0/ as well, indicating that u’s successor strand u0 can continue to execute

while v is executing. The edge from the blue strand in P-FIB.4/ to the orange

strand in P-FIB.4/ illustrates one such edge. As with a call, there is an edge from

the last strand v0 in the child, but with a spawn, it no longer goes to u’s successor.

Instead, the edge is .v0; x/, where x is the strand immediately following the sync in

the parent that ensures that the child has finished, as with the edge from the white

strand in P-FIB.3/ to the white strand in P-FIB.4/.

You can figure out what parallel control created a particular trace. If a strand

has two successors, one of them must have been spawned, and if a strand has

multiple predecessors, the predecessors joined because of a sync statement. Thus,

in the general case, the set V forms the set of strands, and the set E of directed

edges represents dependencies between strands induced by parallel and procedural

756 Chapter 26 Parallel Algorithms

control. If G contains a directed path from strand u to strand v, we say that the

two strands are (logically) in series. If there is no path in G either from u to v or

from v to u, the strands are (logically) in parallel.

A fork-join parallel trace can be pictured as a dag of strands embedded in an

invocation tree of procedure instances. For example, Figure 26.1 shows the invo-

cation tree for FIB.6/, which also serves as the invocation tree for P-FIB.6/, the

edges between procedure instances now representing either calls or spawns. Fig-

ure 26.2 zooms in on the subtree that is shaded blue, showing the strands that con-

stitute each procedure instance in P-FIB.4/. All directed edges connecting strands

run either within a procedure or along undirected edges of the invocation tree in

Figure 26.1. (More general task-parallel traces that are not fork-join traces may

contain some directed edges that do not run along the undirected tree edges.)

Our analyses generally assume that parallel algorithms execute on an ideal par-

allel computer, which consists of a set of processors and a sequentially consistent

shared memory. To understand sequential consistency, you first need to know that

memory is accessed by load instructions, which copy data from a location in the

memory to a register within a processor, and by store instructions, which copy data

from a processor register to a location in the memory. A single line of pseudocode

can entail several such instructions. For example, the line x D y C ´ could result

in load instructions to fetch each of y and ´ from memory into a processor, an in-

struction to add them together inside the processor, and a store instruction to place

the result x back into memory. In a parallel computer, several processors might

need to load or store at the same time. Sequential consistency means that even if

multiple processors attempt to access the memory simultaneously, the shared mem-

ory behaves as if exactly one instruction from one of the processors is executed at

a time, even though the actual transfer of data may happen at the same time. It is

as if the instructions were executed one at a time sequentially according to some

global linear order among all the processors that preserves the individual orders in

which each processor executes its own instructions.

For task-parallel computations, which are scheduled onto processors automati-

cally by a runtime system, the sequentially consistent shared memory behaves as

if a parallel computation’s executed instructions were executed one by one in the

order of a topological sort (see Section 20.4) of its trace. That is, you can reason

about the execution by imagining that the individual instructions (not generally the

strands, which may aggregate many instructions) are interleaved in some linear

order that preserves the partial order of the trace. Depending on scheduling, the

linear order could vary from one run of the program to the next, but the behavior

of any execution is always as if the instructions executed serially in a linear order

consistent with the dependencies within the trace.

In addition to making assumptions about semantics, the ideal parallel-computer

model makes some performance assumptions. Specifically, it assumes that each

26.1 The basics of fork-join parallelism 757

processor in the machine has equal computing power, and it ignores the cost of

scheduling. Although this last assumption may sound optimistic, it turns out that

for algorithms with sufficient “parallelism” (a term we’ll define precisely a little

later), the overhead of scheduling is generally minimal in practice.

Performance measures

We can gauge the theoretical efficiency of a task-parallel algorithm using work/

span analysis, which is based on two metrics: “work” and “span.” The work of

a task-parallel computation is the total time to execute the entire computation on

one processor. In other words, the work is the sum of the times taken by each of

the strands. If each strand takes unit time, the work is just the number of vertices

in the trace. The span is the fastest possible time to execute the computation on an

unlimited number of processors, which corresponds to the sum of the times taken

by the strands along a longest path in the trace, where “longest” means that each

strand is weighted by its execution time. Such a longest path is called the critical

path of the trace, and thus the span is the weight of the longest (weighted) path

in the trace. (Section 22.2, pages 617–619 shows how to find a critical path in a

dag G D .V; E/ in ‚.V C E/ time.) For a trace in which each strand takes unit

time, the span equals the number of strands on the critical path. For example, the

trace of Figure 26.2 has 17 vertices in all and 8 vertices on its critical path, so that

if each strand takes unit time, its work is 17 time units and its span is 8 time units.

The actual running time of a task-parallel computation depends not only on its

work and its span, but also on how many processors are available and how the

scheduler allocates strands to processors. To denote the running time of a task-

parallel computation on P processors, we subscript by P . For example, we might

denote the running time of an algorithm on P processors by TP . The work is

the running time on a single processor, or T1. The span is the running time if we

could run each strand on its own processor—in other words, if we had an unlimited

number of processors—and so we denote the span by T1.

The work and span provide lower bounds on the running time TP of a task-

parallel computation on P processors:

� In one step, an ideal parallel computer with P processors can do at most P

units of work, and thus in TP time, it can perform at most P TP work. Since the

total work to do is T1, we have P TP � T1. Dividing by P yields the work law:

TP � T1=P : (26.2)

� A P -processor ideal parallel computer cannot run any faster than a machine

with an unlimited number of processors. Looked at another way, a machine

758 Chapter 26 Parallel Algorithms

with an unlimited number of processors can emulate a P -processor machine by

using just P of its processors. Thus, the span law follows:

TP � T1 : (26.3)

We define the speedup of a computation on P processors by the ratio T1=TP ,

which says how many times faster the computation runs on P processors than

on one processor. By the work law, we have TP � T1=P , which implies that

T1=TP � P . Thus, the speedup on a P -processor ideal parallel computer can be

at most P . When the speedup is linear in the number of processors, that is, when

T1=TP D ‚.P /, the computation exhibits linear speedup. Perfect linear speedup

occurs when T1=TP D P .

The ratio T1=T1 of the work to the span gives the parallelism of the parallel

computation. We can view the parallelism from three perspectives. As a ratio, the

parallelism denotes the average amount of work that can be performed in parallel

for each step along the critical path. As an upper bound, the parallelism gives the

maximum possible speedup that can be achieved on any number of processors. Per-

haps most important, the parallelism provides a limit on the possibility of attaining

perfect linear speedup. Specifically, once the number of processors exceeds the

parallelism, the computation cannot possibly achieve perfect linear speedup. To

see this last point, suppose that P > T1=T1, in which case the span law implies

that the speedup satisfies T1=TP � T1=T1 < P . Moreover, if the number P of

processors in the ideal parallel computer greatly exceeds the parallelism—that is,

if P � T1=T1—then T1=TP � P , so that the speedup is much less than the

number of processors. In other words, if the number of processors exceeds the

parallelism, adding even more processors makes the speedup less perfect.

As an example, consider the computation P-FIB.4/ in Figure 26.2, and assume

that each strand takes unit time. Since the work is T1 D 17 and the span is T1 D 8,

the parallelism is T1=T1 D 17=8 D 2:125. Consequently, achieving much more

than double the performance is impossible, no matter how many processors execute

the computation. For larger input sizes, however, we’ll see that P-FIB.n/ exhibits

substantial parallelism.

We define the (parallel) slackness of a task-parallel computation executed on

an ideal parallel computer with P processors to be the ratio .T1=T1/=P D
T1=.P T1/, which is the factor by which the parallelism of the computation ex-

ceeds the number of processors in the machine. Restating the bounds on speedup,

if the slackness is less than 1, perfect linear speedup is impossible, because

T1=.P T1/ < 1 and the span law imply that T1=TP � T1=T1 < P . Indeed,

as the slackness decreases from 1 and approaches 0, the speedup of the computa-

tion diverges further and further from perfect linear speedup. If the slackness is

less than 1, additional parallelism in an algorithm can have a great impact on its

26.1 The basics of fork-join parallelism 759

execution efficiency. If the slackness is greater than 1, however, the work per pro-

cessor is the limiting constraint. We’ll see that as the slackness increases from 1, a

good scheduler can achieve closer and closer to perfect linear speedup. But once

the slackness is much greater than 1, the advantage of additional parallelism shows

diminishing returns.

Scheduling

Good performance depends on more than just minimizing the work and span. The

strands must also be scheduled efficiently onto the processors of the parallel ma-

chine. Our fork-join parallel-programming model provides no way for a program-

mer to specify which strands to execute on which processors. Instead, we rely on

the runtime system’s scheduler to map the dynamically unfolding computation to

individual processors. In practice, the scheduler maps the strands to static threads,

and the operating system schedules the threads on the processors themselves. But

this extra level of indirection is unnecessary for our understanding of scheduling.

We can just imagine that the scheduler maps strands to processors directly.

A task-parallel scheduler must schedule the computation without knowing in ad-

vance when procedures will be spawned or when they will finish—that is, it must

operate online. Moreover, a good scheduler operates in a distributed fashion, where

the threads implementing the scheduler cooperate to load-balance the computation.

Provably good online, distributed schedulers exist, but analyzing them is compli-

cated. Instead, to keep our analysis simple, we’ll consider an online centralized

scheduler that knows the global state of the computation at any moment.

In particular, we’ll analyze greedy schedulers, which assign as many strands to

processors as possible in each time step, never leaving a processor idle if there is

work that can be done. We’ll classify each step of a greedy scheduler as follows:

� Complete step: At least P strands are ready to execute, meaning that all strands

on which they depend have finished execution. A greedy scheduler assigns

any P of the ready strands to the processors, completely utilizing all the pro-

cessor resources.

� Incomplete step: Fewer than P strands are ready to execute. A greedy sched-

uler assigns each ready strand to its own processor, leaving some processors

idle for the step, but executing all the ready strands.

The work law tells us that the fastest running time TP that we can hope for

on P processors must be at least T1=P . The span law tells us that the fastest

possible running time must be at least T1. The following theorem shows that

greedy scheduling is provably good in that it achieves the sum of these two lower

bounds as an upper bound.

760 Chapter 26 Parallel Algorithms

Theorem 26.1

On an ideal parallel computer with P processors, a greedy scheduler executes a

task-parallel computation with work T1 and span T1 in time

TP � T1=P C T1 : (26.4)

Proof Without loss of generality, assume that each strand takes unit time. (If nec-

essary, replace each longer strand by a chain of unit-time strands.) We’ll consider

complete and incomplete steps separately.

In each complete step, the P processors together perform a total of P work.

Thus, if the number of complete steps is k, the total work executing all the complete

steps is kP . Since the greedy scheduler doesn’t execute any strand more than once

and only T1 work needs to be performed, it follows that kP � T1, from which we

can conclude that the number k of complete steps is at most T1=P .

Now, let’s consider an incomplete step. Let G be the trace for the entire com-

putation, let G 0 be the subtrace of G that has yet to be executed at the start of the

incomplete step, and let G 00 be the subtrace remaining to be executed after the in-

complete step. Consider the set R of strands that are ready at the beginning of the

incomplete step, where jRj < P . By definition, if a strand is ready, all its predeces-

sors in trace G have executed. Thus the predecessors of strands in R do not belong

to G 0. A longest path in G 0 must necessarily start at a strand in R, since every other

strand in G0 has a predecessor and thus could not start a longest path. Because the

greedy scheduler executes all ready strands during the incomplete step, the strands

of G 00 are exactly those in G0 minus the strands in R. Consequently, the length

of a longest path in G 00 must be 1 less than the length of a longest path in G 0. In

other words, every incomplete step decreases the span of the trace remaining to be

executed by 1. Hence, the number of incomplete steps can be at most T1.

Since each step is either complete or incomplete, the theorem follows.

The following corollary shows that a greedy scheduler always performs well.

Corollary 26.2

The running time TP of any task-parallel computation scheduled by a greedy sched-

uler on a P -processor ideal parallel computer is within a factor of 2 of optimal.

Proof Let T �

P be the running time produced by an optimal scheduler on a machine

with P processors, and let T1 and T1 be the work and span of the computation,

respectively. Since the work and span laws—inequalities (26.2) and (26.3)—give

T �

P � max fT1=P; T1g, Theorem 26.1 implies that

TP � T1=P C T1

� 2 � max fT1=P; T1g
� 2T �

P :

26.1 The basics of fork-join parallelism 761

The next corollary shows that, in fact, a greedy scheduler achieves near-perfect

linear speedup on any task-parallel computation as the slackness grows.

Corollary 26.3

Let TP be the running time of a task-parallel computation produced by a greedy

scheduler on an ideal parallel computer with P processors, and let T1 and T1 be

the work and span of the computation, respectively. Then, if P � T1=T1, or

equivalently, the parallel slackness is much greater than 1, we have TP � T1=P , a

speedup of approximately P .

Proof If we suppose that P � T1=T1, then it follows that T1 � T1=P , and

hence Theorem 26.1 gives TP � T1=P C T1 � T1=P . Since the work law (26.2)

dictates that TP � T1=P , we conclude that TP � T1=P , which is a speedup of

T1=TP � P .

The � symbol denotes “much less,” but how much is “much less”? As a rule

of thumb, a slackness of at least 10—that is, 10 times more parallelism than pro-

cessors—generally suffices to achieve good speedup. Then, the span term in the

greedy bound, inequality (26.4), is less than 10% of the work-per-processor term,

which is good enough for most engineering situations. For example, if a computa-

tion runs on only 10 or 100 processors, it doesn’t make sense to value parallelism

of, say 1,000,000, over parallelism of 10,000, even with the factor of 100 differ-

ence. As Problem 26-2 shows, sometimes reducing extreme parallelism yields

algorithms that are better with respect to other concerns and which still scale up

well on reasonable numbers of processors.

Analyzing parallel algorithms

We now have all the tools we need to analyze parallel algorithms using work/span

analysis, allowing us to bound an algorithm’s running time on any number of pro-

cessors. Analyzing the work is relatively straightforward, since it amounts to noth-

ing more than analyzing the running time of an ordinary serial algorithm, namely,

the serial projection of the parallel algorithm. You should already be familiar with

analyzing work, since that is what most of this textbook is about! Analyzing the

span is the new thing that parallelism engenders, but it’s generally no harder once

you get the hang of it. Let’s investigate the basic ideas using the P-FIB program.

Analyzing the work T1.n/ of P-FIB.n/ poses no hurdles, because we’ve already

done it. The serial projection of P-FIB is effectively the original FIB procedure,

and hence, we have T1.n/ D T .n/ D ‚.�n/ from equation (26.1).

Figure 26.3 illustrates how to analyze the span. If two traces are joined in series,

their spans add to form the span of their composition, whereas if they are joined

762 Chapter 26 Parallel Algorithms

A

(a) (b)

B

A

B

Work: T1.A [B/ D T1.A/ C T1.B/

Span: T1.A [B/ D T1.A/ C T1.B/

Work: T1.A [B/ D T1.A/ C T1.B/

Span: T1.A [B/ D max.T1.A/; T1.B/)

Figure 26.3 Series-parallel composition of parallel traces. (a) When two traces are joined in series,

the work of the composition is the sum of their work, and the span of the composition is the sum of

their spans. (b) When two traces are joined in parallel, the work of the composition remains the sum

of their work, but the span of the composition is only the maximum of their spans.

in parallel, the span of their composition is the maximum of the spans of the two

traces. As it turns out, the trace of any fork-join parallel computation can be built

up from single strands by series-parallel composition.

Armed with an understanding of series-parallel composition, we can analyze the

span of P-FIB.n/. The spawned call to P-FIB.n � 1/ in line 3 runs in parallel with

the call to P-FIB.n � 2/ in line 4. Hence, we can express the span of P-FIB.n/ as

the recurrence

T1.n/ D max fT1.n � 1/; T1.n � 2/g C ‚.1/

D T1.n � 1/ C ‚.1/ ;

which has solution T1.n/ D ‚.n/. (The second equality above follows from the

first because P-FIB.n � 1/ uses P-FIB.n � 2/ in its computation, so that the span

of P-FIB.n � 1/ must be at least as large as the span of P-FIB.n � 2/.)

The parallelism of P-FIB.n/ is T1.n/=T1.n/ D ‚.�n=n/, which grows dramat-

ically as n gets large. Thus, Corollary 26.3 tells us that on even the largest parallel

computers, a modest value for n suffices to achieve near perfect linear speedup for

P-FIB.n/, because this procedure exhibits considerable parallel slackness.

Parallel loops

Many algorithms contain loops for which all the iterations can operate in parallel.

Although the spawn and sync keywords can be used to parallelize such loops,

it is more convenient to specify directly that the iterations of such loops can run

in parallel. Our pseudocode provides this functionality via the parallel keyword,

which precedes the for keyword in a for loop statement.

26.1 The basics of fork-join parallelism 763

As an example, consider the problem of multiplying a square n � n matrix

A D .aij / by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given

by the equation

yi D
n

X

j D1

aij xj ;

for i D 1; 2; : : : ; n. The P-MAT-VEC procedure performs matrix-vector multipli-

cation (actually, y D y C Ax) by computing all the entries of y in parallel. The

parallel for keywords in line 1 of P-MAT-VEC indicate that the n iterations of the

loop body, which includes a serial for loop, may be run in parallel. The initializa-

tion y D 0, if desired, should be performed before calling the procedure (and can

be done with a parallel for loop).

P-MAT-VEC.A; x; y; n/

1 parallel for i D 1 to n // parallel loop

2 for j D 1 to n // serial loop

3 yi D yi C aij xj

Compilers for fork-join parallel programs can implement parallel for loops in

terms of spawn and sync by using recursive spawning. For example, for the

parallel for loop in lines 1–3, a compiler can generate the auxiliary subroutine

P-MAT-VEC-RECURSIVE and call P-MAT-VEC-RECURSIVE.A; x; y; n; 1; n/ in

the place where the loop would be in the compiled code. As Figure 26.4 illus-

trates, this procedure recursively spawns the first half of the iterations of the loop

to execute in parallel (line 5) with the second half of the iterations (line 6) and then

executes a sync (line 7), thereby creating a binary tree of parallel execution. Each

leaf represents a base case, which is the serial for loop of lines 2–3.

P-MAT-VEC-RECURSIVE.A; x; y; n; i; i 0/

1 if i == i 0 // just one iteration to do?

2 for j D 1 to n // mimic P-MAT-VEC serial loop

3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c // parallel divide-and-conquer

5 spawn P-MAT-VEC-RECURSIVE.A; x; y; n; i; mid/

6 P-MAT-VEC-RECURSIVE.A; x; y; n; mid C 1; i 0/

7 sync

To calculate the work T1.n/ of P-MAT-VEC on an n�n matrix, simply compute

the running time of its serial projection, which comes from replacing the parallel

764 Chapter 26 Parallel Algorithms

1:1 2:2 3:3 4:4 5:5 6:6 7:7 8:8

1:2 3:4 5:6 7:8

1:4 5:8

1:8

Figure 26.4 A trace for the computation of P-MAT-VEC-RECURSIVE.A; x; y; 8; 1; 8/. The two

numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in

the procedure header) in the invocation (spawn, in blue, or call, in tan) of the procedure. The

blue circles represent strands corresponding to the part of the procedure up to the spawn of

P-MAT-VEC-RECURSIVE in line 5. The orange circles represent strands corresponding to the part of

the procedure that calls P-MAT-VEC-RECURSIVE in line 6 up to the sync in line 7, where it suspends

until the spawned subroutine in line 5 returns. The white circles represent strands corresponding to

the (negligible) part of the procedure after the sync up to the point where it returns.

for loop in line 1 with an ordinary for loop. The running time of the resulting serial

pseudocode is ‚.n2/, which means that T1.n/ D ‚.n2/. This analysis seems to

ignore the overhead for recursive spawning in implementing the parallel loops,

however. Indeed, the overhead of recursive spawning does increase the work of

a parallel loop compared with that of its serial projection, but not asymptotically.

To see why, observe that since the tree of recursive procedure instances is a full

binary tree, the number of internal nodes is one less than the number of leaves

(see Exercise B.5-3 on page 1175). Each internal node performs constant work to

divide the iteration range, and each leaf corresponds to a base case, which takes

at least constant time (‚.n/ time in this case). Thus, by amortizing the overhead

of recursive spawning over the work of the iterations in the leaves, we see that the

overall work increases by at most a constant factor.

To reduce the overhead of recursive spawning, task-parallel platforms sometimes

coarsen the leaves of the recursion by executing several iterations in a single leaf,

either automatically or under programmer control. This optimization comes at

the expense of reducing the parallelism. If the computation has sufficient parallel

slackness, however, near-perfect linear speedup won’t be sacrificed.

26.1 The basics of fork-join parallelism 765

Although recursive spawning doesn’t affect the work of a parallel loop asymp-

totically, we must take it into account when analyzing the span. Consider a parallel

loop with n iterations in which the i th iteration has span iter1.i/. Since the depth

of recursion is logarithmic in the number of iterations, the parallel loop’s span is

T1.n/ D ‚.lg n/ C max fiter1.i/ W 1 � i � ng :

For example, let’s compute the span of the doubly nested loops in lines 1–3 of

P-MAT-VEC. The span for the parallel for loop control is ‚.lg n/. For each it-

eration of the outer parallel loop, the inner serial for loop contains n iterations of

line 3. Since each iteration takes constant time, the total span for the inner serial for

loop is ‚.n/, no matter which iteration of the outer parallel for loop it’s in. Thus,

taking the maximum over all iterations of the outer loop and adding in the ‚.lg n/

for loop control yields an overall span of T1n D ‚.n/ C ‚.lg n/ D ‚.n/ for the

procedure. Since the work is ‚.n2/, the parallelism is ‚.n2/=‚.n/ D ‚.n/. (Ex-

ercise 26.1-7 asks you to provide an implementation with even more parallelism.)

Race conditions

A parallel algorithm is deterministic if it always does the same thing on the same

input, no matter how the instructions are scheduled on the multicore computer. It

is nondeterministic if its behavior might vary from run to run when the input is the

same. A parallel algorithm that is intended to be deterministic may nevertheless

act nondeterministically, however, if it contains a difficult-to-diagnose bug called a

“determinacy race.”

Famous race bugs include the Therac-25 radiation therapy machine, which killed

three people and injured several others, and the Northeast Blackout of 2003, which

left over 50 million people in the United States without power. These pernicious

bugs are notoriously hard to find. You can run tests in the lab for days without a

failure, only to discover that your software sporadically crashes in the field, some-

times with dire consequences.

A determinacy race occurs when two logically parallel instructions access the

same memory location and at least one of the instructions modifies the value stored

in the location. The toy procedure RACE-EXAMPLE on the following page illus-

trates a determinacy race. After initializing x to 0 in line 1, RACE-EXAMPLE

creates two parallel strands, each of which increments x in line 3. Although it

might seem that a call of RACE-EXAMPLE should always print the value 2 (its se-

rial projection certainly does), it could instead print the value 1. Let’s see how this

anomaly might occur.

When a processor increments x, the operation is not indivisible, but is composed

of a sequence of instructions:

766 Chapter 26 Parallel Algorithms

incr r13

r1 = x2

x = r17

incr r25

r2 = x4

x = r26

x = 01

print x8

(a)

step x r1 r2

1

2

3

4

5

6

7

0

0

0

0

0

1

1

–

0

1

1

1

1

1

–

–

–

0

1

1

1

(b)

Figure 26.5 Illustration of the determinacy race in RACE-EXAMPLE. (a) A trace showing the

dependencies among individual instructions. The processor registers are r1 and r2. Instructions

unrelated to the race, such as the implementation of loop control, are omitted. (b) An execution

sequence that elicits the bug, showing the values of x in memory and registers r1 and r2 for each

step in the execution sequence.

RACE-EXAMPLE. /

1 x D 0

2 parallel for i D 1 to 2

3 x D x C 1 // determinacy race

4 print x

� Load x from memory into one of the processor’s registers.

� Increment the value in the register.

� Store the value in the register back into x in memory.

Figure 26.5(a) illustrates a trace representing the execution of RACE-EXAMPLE,

with the strands broken down to individual instructions. Recall that since an ideal

parallel computer supports sequential consistency, you can view the parallel ex-

ecution of a parallel algorithm as an interleaving of instructions that respects the

dependencies in the trace. Part (b) of the figure shows the values in an execution

of the computation that elicits the anomaly. The value x is kept in memory, and

r1 and r2 are processor registers. In step 1, one of the processors sets x to 0. In

steps 2 and 3, processor 1 loads x from memory into its register r1 and increments

it, producing the value 1 in r1. At that point, processor 2 comes into the picture,

executing instructions 4–6. Processor 2 loads x from memory into register r2; in-

crements it, producing the value 1 in r2; and then stores this value into x, setting x

to 1. Now, processor 1 resumes with step 7, storing the value 1 in r1 into x, which

26.1 The basics of fork-join parallelism 767

leaves the value of x unchanged. Therefore, step 8 prints the value 1, rather than

the value 2 that the serial projection would print.

Let’s recap what happened. By sequential consistency, the effect of the parallel

execution is as if the executed instructions of the two processors are interleaved.

If processor 1 executes all its instructions before processor 2, a trivial interleaving,

the value 2 is printed. Conversely, if processor 2 executes all its instructions before

processor 1, the value 2 is still printed. When the instructions of the two processors

interleave nontrivially, however, it is possible, as in this example execution, that

one of the updates to x is lost, resulting in the value 1 being printed.

Of course, many executions do not elicit the bug. That’s the problem with deter-

minacy races. Generally, most instruction orderings produce correct results, such

as any where the instructions on the left branch execute before the instructions

on the right branch, or vice versa. But some orderings generate improper results

when the instructions interleave. Consequently, races can be extremely hard to test

for. Your program may fail, but you may be unable to reliably reproduce the fail-

ure in subsequent tests, confounding your attempts to locate the bug in your code

and fix it. Task-parallel programming environments often provide race-detection

productivity tools to help you isolate race bugs.

Many parallel programs in the real world are intentionally nondeterministic.

They contain determinacy races, but they mitigate the dangers of nondeterminism

through the use of mutual-exclusion locks and other methods of synchronization.

For our purposes, however, we’ll insist on an absence of determinacy races in the

algorithms we develop. Nondeterministic programs are indeed interesting, but non-

deterministic programming is a more advanced topic and unnecessary for a wide

swath of interesting parallel algorithms.

To ensure that algorithms are deterministic, any two strands that operate in par-

allel should be mutually noninterfering: they only read, and do not modify, any

memory locations accessed by both of them. Consequently, in a parallel for con-

struct, such as the outer loop of P-MAT-VEC, we want all the iterations of the

body, including any code an iteration executes in subroutines, to be mutually non-

interfering. And between a spawn and its corresponding sync, we want the code

executed by the spawned child and the code executed by the parent to be mutually

noninterfering, once again including invoked subroutines.

As an example of how easy it is to write code with unintentional races, the

P-MAT-VEC-WRONG procedure on the next page is a faulty parallel implementa-

tion of matrix-vector multiplication that achieves a span of ‚.lg n/ by parallelizing

the inner for loop. This procedure is incorrect, unfortunately, due to determinacy

races when updating yi in line 3, which executes in parallel for all n values of j .

Index variables of parallel for loops, such as i in line 1 and j in line 2, do

not cause races between iterations. Conceptually, each iteration of the loop creates

an independent variable to hold the index of that iteration during that iteration’s

768 Chapter 26 Parallel Algorithms

P-MAT-VEC-WRONG.A; x; y; n/

1 parallel for i D 1 to n

2 parallel for j D 1 to n

3 yi D yi C aij xj // determinacy race

execution of the loop body. Even if two parallel iterations both access the same in-

dex variable, they really are accessing different variable instances—hence different

memory locations—and no race occurs.

A parallel algorithm with races can sometimes be deterministic. As an exam-

ple, two parallel threads might store the same value into a shared variable, and it

wouldn’t matter which stored the value first. For simplicity, however, we generally

prefer code without determinacy races, even if the races are benign. And good

parallel programmers frown on code with determinacy races that cause nondeter-

ministic behavior, if deterministic code that performs comparably is an option.

But nondeterministic code does have its place. For example, you can’t im-

plement a parallel hash table, a highly practical data structure, without writing

code containing determinacy races. Much research has centered around how to ex-

tend the fork-join model to incorporate limited “structured” nondeterminism while

avoiding the full measure of complications that arise when nondeterminism is com-

pletely unrestricted.

A chess lesson

To illustrate the power of work/span analysis, this section closes with a true story

that occurred during the development of one of the first world-class parallel chess-

playing programs [106] many years ago. The timings below have been simplified

for exposition.

The chess program was developed and tested on a 32-processor computer, but it

was designed to run on a supercomputer with 512 processors. Since the supercom-

puter availability was limited and expensive, the developers ran benchmarks on the

small computer and extrapolated performance to the large computer.

At one point, the developers incorporated an optimization into the program that

reduced its running time on an important benchmark on the small machine from

T32 D 65 seconds to T 0

32 D 40 seconds. Yet, the developers used the work and span

performance measures to conclude that the optimized version, which was faster

on 32 processors, would actually be slower than the original version on the 512

processors of the large machine. As a result, they abandoned the “optimization.”

Here is their work/span analysis. The original version of the program had work

T1 D 2048 seconds and span T1 D 1 second. Let’s treat inequality (26.4) on

26.1 The basics of fork-join parallelism 769

page 760 as the equation TP D T1=P C T1, which we can use as an approximation

to the running time on P processors. Then indeed we have T32 D 2048=32 C 1 D
65. With the optimization, the work becomes T 0

1 D 1024 seconds, and the span

becomes T 0

1
D 8 seconds. Our approximation gives T 0

32 D 1024=32 C 8 D 40.

The relative speeds of the two versions switch when we estimate their running

times on 512 processors, however. The first version has a running time of T512 D
2048=512C1 D 5 seconds, and the second version runs in T 0

512 D 1024=512C8 D
10 seconds. The optimization that speeds up the program on 32 processors makes

the program run for twice as long on 512 processors! The optimized version’s

span of 8, which is not the dominant term in the running time on 32 processors,

becomes the dominant term on 512 processors, nullifying the advantage from using

more processors. The optimization does not scale up.

The moral of the story is that work/span analysis, and measurements of work

and span, can be superior to measured running times alone in extrapolating an

algorithm’s scalability.

Exercises

26.1-1

What does a trace for the execution of a serial algorithm look like?

26.1-2

Suppose that line 4 of P-FIB spawns P-FIB.n � 2/, rather than calling it as is done

in the pseudocode. How would the trace of P-FIB(4) in Figure 26.2 change? What

is the impact on the asymptotic work, span, and parallelism?

26.1-3

Draw the trace that results from executing P-FIB.5/. Assuming that each strand

in the computation takes unit time, what are the work, span, and parallelism of

the computation? Show how to schedule the trace on 3 processors using greedy

scheduling by labeling each strand with the time step in which it is executed.

26.1-4

Prove that a greedy scheduler achieves the following time bound, which is slightly

stronger than the bound proved in Theorem 26.1:

TP � T1 � T1

P
C T1 : (26.5)

26.1-5

Construct a trace for which one execution by a greedy scheduler can take nearly

twice the time of another execution by a greedy scheduler on the same number of

processors. Describe how the two executions would proceed.

770 Chapter 26 Parallel Algorithms

26.1-6

Professor Karan measures her deterministic task-parallel algorithm on 4, 10, and 64

processors of an ideal parallel computer using a greedy scheduler. She claims

that the three runs yielded T4 D 80 seconds, T10 D 42 seconds, and T64 D 10

seconds. Argue that the professor is either lying or incompetent. (Hint: Use the

work law (26.2), the span law (26.3), and inequality (26.5) from Exercise 26.1-4.)

26.1-7

Give a parallel algorithm to multiply an n � n matrix by an n-vector that achieves

‚.n2= lg n/ parallelism while maintaining ‚.n2/ work.

26.1-8

Analyze the work, span, and parallelism of the procedure P-TRANSPOSE, which

transposes an n � n matrix A in place.

P-TRANSPOSE.A; n/

1 parallel for j D 2 to n

2 parallel for i D 1 to j � 1

3 exchange aij with aj i

26.1-9

Suppose that instead of a parallel for loop in line 2, the P-TRANSPOSE proce-

dure in Exercise 26.1-8 had an ordinary for loop. Analyze the work, span, and

parallelism of the resulting algorithm.

26.1-10

For what number of processors do the two versions of the chess program run

equally fast, assuming that TP D T1=P C T1?

26.2 Parallel matrix multiplication

In this section, we’ll explore how to parallelize the three matrix-multiplication al-

gorithms from Sections 4.1 and 4.2. We’ll see that each algorithm can be paral-

lelized in a straightforward fashion using either parallel loops or recursive spawn-

ing. We’ll analyze them using work/span analysis, and we’ll see that each parallel

algorithm attains the same performance on one processor as its corresponding se-

rial algorithm, while scaling up to large numbers of processors.

26.2 Parallel matrix multiplication 771

A parallel algorithm for matrix multiplication using parallel loops

The first algorithm we’ll study is P-MATRIX-MULTIPLY, which simply paral-

lelizes the two outer loops in the procedure MATRIX-MULTIPLY on page 81.

P-MATRIX-MULTIPLY.A; B; C; n/

1 parallel for i D 1 to n // compute entries in each of n rows

2 parallel for j D 1 to n // compute n entries in row i

3 for k D 1 to n

4 cij D cij C aik � bkj // add in another term of equation (4.1)

Let’s analyze P-MATRIX-MULTIPLY. Since the serial projection of the algo-

rithm is just MATRIX-MULTIPLY, the work is the same as the running time of

MATRIX-MULTIPLY: T1.n/ D ‚.n3/. The span is T1.n/ D ‚.n/, because it fol-

lows a path down the tree of recursion for the parallel for loop starting in line 1,

then down the tree of recursion for the parallel for loop starting in line 2, and

then executes all n iterations of the ordinary for loop starting in line 3, resulting

in a total span of ‚.lg n/ C ‚.lg n/ C ‚.n/ D ‚.n/. Thus the parallelism is

‚.n3/=‚.n/ D ‚.n2/. (Exercise 26.2-3 asks you to parallelize the inner loop to

obtain a parallelism of ‚.n3= lg n/, which you cannot do straightforwardly using

parallel for, because you would create races.)

A parallel divide-and-conquer algorithm for matrix multiplication

Section 4.1 shows how to multiply n � n matrices serially in ‚.n3/ time using

a divide-and-conquer strategy. Let’s see how to parallelize that algorithm using

recursive spawning instead of calls.

The serial MATRIX-MULTIPLY-RECURSIVE procedure on page 83 takes as

input three n � n matrices A, B , and C and performs the matrix calculation

C D C C A � B by recursively performing eight multiplications of n=2 � n=2

submatrices of A and B . The P-MATRIX-MULTIPLY-RECURSIVE procedure on

the following page implements the same divide-and-conquer strategy, but it uses

spawning to perform the eight multiplications in parallel. To avoid determinacy

races in updating the elements of C , it creates a temporary matrix D to store four

of the submatrix products. At the end, it adds C and D together to produce the

final result. (Problem 26-2 asks you to eliminate the temporary matrix D at the

expense of some parallelism.)

Lines 2–3 of P-MATRIX-MULTIPLY-RECURSIVE handle the base case of mul-

tiplying 1 � 1 matrices. The remainder of the procedure deals with the recursive

case. Line 4 allocates a temporary matrix D, and lines 5–7 zero it. Line 8 parti-

tions each of the four matrices A, B , C , and D into n=2 � n=2 submatrices. (As

772 Chapter 26 Parallel Algorithms

P-MATRIX-MULTIPLY-RECURSIVE.A; B; C; n/

1 if n == 1 // just one element in each matrix?

2 c11 D c11 C a11 � b11

3 return

4 let D be a new n � n matrix // temporary matrix

5 parallel for i D 1 to n // set D D 0

6 parallel for j D 1 to n

7 dij D 0

8 partition A, B , C , and D into n=2 � n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;

and D11; D12; D21; D22; respectively

9 spawn P-MATRIX-MULTIPLY-RECURSIVE.A11; B11; C11; n=2/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.A11; B12; C12; n=2/

11 spawn P-MATRIX-MULTIPLY-RECURSIVE.A21; B11; C21; n=2/

12 spawn P-MATRIX-MULTIPLY-RECURSIVE.A21; B12; C22; n=2/

13 spawn P-MATRIX-MULTIPLY-RECURSIVE.A12; B21; D11; n=2/

14 spawn P-MATRIX-MULTIPLY-RECURSIVE.A12; B22; D12; n=2/

15 spawn P-MATRIX-MULTIPLY-RECURSIVE.A22; B21; D21; n=2/

16 spawn P-MATRIX-MULTIPLY-RECURSIVE.A22; B22; D22; n=2/

17 sync // wait for spawned submatrix products

18 parallel for i D 1 to n // update C D C C D

19 parallel for j D 1 to n

20 cij D cij C dij

with MATRIX-MULTIPLY-RECURSIVE on page 83, we’re glossing over the subtle

issue of how to use index calculations to represent submatrix sections of a matrix.)

The spawned recursive call in line 9 sets C11 D C11 C A11 � B11, so that C11 ac-

cumulates the first of the two terms in equation (4.5) on page 82. Similarly, lines

10–12 cause each of C12, C21, and C22 in parallel to accumulate the first of the

two terms in equations (4.6)–(4.8), respectively. Line 13 sets the submatrix D11 to

the submatrix product A12 � B21, so that D11 equals the second of the two terms

in equation (4.5). Lines 14–16 set each of D12, D21, and D22 in parallel to the

second of the two terms in equations (4.6)–(4.8), respectively. The sync statement

in line 17 ensures that all the spawned submatrix products in lines 9–16 have been

computed, after which the doubly nested parallel for loops in lines 18–20 add the

elements of D to the corresponding elements of C .

Let’s analyze the P-MATRIX-MULTIPLY-RECURSIVE procedure. We start by

analyzing the work M1.n/, echoing the serial running-time analysis of its progen-

itor MATRIX-MULTIPLY-RECURSIVE. The recursive case allocates and zeros the

26.2 Parallel matrix multiplication 773

temporary matrix D in ‚.n2/ time, partitions in ‚.1/ time, performs eight recur-

sive multiplications of n=2 � n=2 matrices, and finishes up with the ‚.n2/ work

from adding two n�n matrices. Thus the work outside the spawned recursive calls

is ‚.n2/, and the recurrence for the work M1.n/ becomes

M1.n/ D 8M1.n=2/ C ‚.n2/

D ‚.n3/

by case 1 of the master theorem (Theorem 4.1). Not surprisingly, the work of this

parallel algorithm is asymptotically the same as the running time of the procedure

MATRIX-MULTIPLY on page 81, with its triply nested loops.

Let’s determine the span M1.n/ of P-MATRIX-MULTIPLY-RECURSIVE. Be-

cause the eight parallel recursive spawns all execute on matrices of the same size,

the maximum span for any recursive spawn is just the span of a single one of

them, or M1.n=2/. The span for the doubly nested parallel for loops in lines 5–7

is ‚.lg n/ because each loop control adds ‚.lg n/ to the constant span of line 7.

Similarly, the doubly nested parallel for loops in lines 18–20 add another ‚.lg n/.

Matrix partitioning by index calculation has ‚.1/ span, which is dominated by the

‚.lg n/ span of the nested loops. We obtain the recurrence

M1.n/ D M1.n=2/ C ‚.lg n/ : (26.6)

Since this recurrence falls under case 2 of the master theorem with k D 1, the

solution is M1.n/ D ‚.lg2 n/.

The parallelism of P-MATRIX-MULTIPLY-RECURSIVE is M1.n/=M1.n/ D
‚.n3= lg2 n/, which is huge. (Problem 26-2 asks you to simplify this parallel al-

gorithm at the expense of just a little less parallelism.)

Parallelizing Strassen’s method

To parallelize Strassen’s algorithm, we can follow the same general outline as on

pages 86–87, but use spawning. You may find it helpful to compare each step

below with the corresponding step there. We’ll analyze costs as we go along to

develop recurrences T1.n/ and T1.n/ for the overall work and span, respectively.

1. If n D 1, the matrices each contain a single element. Perform a single scalar

multiplication and a single scalar addition, and return. Otherwise, partition the

input matrices A and B and output matrix C into n=2 � n=2 submatrices, as in

equation (4.2) on page 82. This step takes ‚.1/ work and ‚.1/ span by index

calculation.

2. Create n=2 � n=2 matrices S1; S2; : : : ; S10, each of which is the sum or dif-

ference of two submatrices from step 1. Create and zero the entries of seven

n=2�n=2 matrices P1; P2; : : : ; P7 to hold seven n=2�n=2 matrix products. All

774 Chapter 26 Parallel Algorithms

17 matrices can be created, and the Pi initialized, with doubly nested parallel

for loops using ‚.n2/ work and ‚.lg n/ span.

3. Using the submatrices from step 1 and the matrices S1; S2; : : : ; S10 created in

step 2, recursively spawn computations of each of the seven n=2 � n=2 matrix

products P1; P2; : : : ; P7, taking 7T1.n=2/ work and T1.n=2/ span.

4. Update the four submatrices C11; C12; C21; C22 of the result matrix C by adding

or subtracting various Pi matrices. Using doubly nested parallel for loops,

computing all four submatrices takes ‚.n2/ work and ‚.lg n/ span.

Let’s analyze this algorithm. Since the serial projection is the same as the orig-

inal serial algorithm, the work is just the running time of the serial projection,

namely, ‚.nlg 7/. As we did with P-MATRIX-MULTIPLY-RECURSIVE, we can

devise a recurrence for the span. In this case, seven recursive calls execute in

parallel, but since they all operate on matrices of the same size, we obtain the

same recurrence (26.6) as we did for P-MATRIX-MULTIPLY-RECURSIVE, with

solution ‚.lg2 n/. Thus the parallel version of Strassen’s method has parallelism

‚.nlg 7= lg2 n/, which is large. Although the parallelism is slightly less than that of

P-MATRIX-MULTIPLY-RECURSIVE, that’s just because the work is also less.

Exercises

26.2-1

Draw the trace for computing P-MATRIX-MULTIPLY on 2 � 2 matrices, labeling

how the vertices in your diagram correspond to strands in the execution of the

algorithm. Assuming that each strand executes in unit time, analyze the work,

span, and parallelism of this computation.

26.2-2

Repeat Exercise 26.2-1 for P-MATRIX-MULTIPLY-RECURSIVE.

26.2-3

Give pseudocode for a parallel algorithm that multiplies two n � n matrices with

work ‚.n3/ but span only ‚.lg n/. Analyze your algorithm.

26.2-4

Give pseudocode for an efficient parallel algorithm that multiplies a p � q matrix

by a q � r matrix. Your algorithm should be highly parallel even if any of p, q,

and r equal 1. Analyze your algorithm.

26.3 Parallel merge sort 775

26.2-5

Give pseudocode for an efficient parallel version of the Floyd-Warshall algorithm

(see Section 23.2), which computes shortest paths between all pairs of vertices in

an edge-weighted graph. Analyze your algorithm.

26.3 Parallel merge sort

We first saw serial merge sort in Section 2.3.1, and in Section 2.3.2 we analyzed

its running time and showed it to be ‚.n lg n/. Because merge sort already uses

the divide-and-conquer method, it seems like a terrific candidate for implementing

using fork-join parallelism.

The procedure P-MERGE-SORT modifies merge sort to spawn the first recursive

call. Like its serial counterpart MERGE-SORT on page 39, the P-MERGE-SORT

procedure sorts the subarray AŒp W r�. After the sync statement in line 8 ensures

that the two recursive spawns in lines 5 and 7 have finished, P-MERGE-SORT calls

the P-MERGE procedure, a parallel merging algorithm, which is on page 779, but

you don’t need to bother looking at it right now.

P-MERGE-SORT.A; p; r/

1 if p � r // zero or one element?

2 return

3 q D b.p C r/=2c // midpoint of AŒp W r�

4 // Recursively sort AŒp W q� in parallel.

5 spawn P-MERGE-SORT.A; p; q/

6 // Recursively sort AŒq C 1 W r� in parallel.

7 spawn P-MERGE-SORT.A; q C 1; r/

8 sync // wait for spawns

9 // Merge AŒp W q� and AŒq C 1 W r� into AŒp W r�.

10 P-MERGE.A; p; q; r/

First, let’s use work/span analysis to get some intuition for why we need a par-

allel merge procedure. After all, it may seem as though there should be plenty

of parallelism just by parallelizing MERGE-SORT without worrying about paral-

lelizing the merge. But what would happen if the call to P-MERGE in line 10

of P-MERGE-SORT were replaced by a call to the serial MERGE procedure on

page 36? Let’s call the pseudocode so modified P-NAIVE-MERGE-SORT.

Let T1.n/ be the (worst-case) work of P-NAIVE-MERGE-SORT on an n-element

subarray, where n D r �p C1 is the number of elements in AŒp W r�, and let T1.n/

776 Chapter 26 Parallel Algorithms

be the span. Because MERGE is serial with running time ‚.n/, both its work and

span are ‚.n/. Since the serial projection of P-NAIVE-MERGE-SORT is exactly

MERGE-SORT, its work is T1.n/ D ‚.n lg n/. The two recursive calls in lines 5

and 7 run in parallel, and so its span is given by the recurrence

T1.n/ D T1.n=2/ C ‚.n/

D ‚.n/ ;

by case 1 of the master theorem. Thus the parallelism of P-NAIVE-MERGE-SORT

is T1.n/=T1.n/ D ‚.lg n/, which is an unimpressive amount of parallelism. To

sort a million elements, for example, since lg 106 � 20, it might achieve linear

speedup on a few processors, but it would not scale up to dozens of processors.

The parallelism bottleneck in P-NAIVE-MERGE-SORT is plainly the MERGE

procedure. If we asymptotically reduce the span of merging, the master theorem

dictates that the span of parallel merge sort will also get smaller. When you look at

the pseudocode for MERGE, it may seem that merging is inherently serial, but it’s

not. We can fashion a parallel merging algorithm. The goal is to reduce the span of

parallel merging asymptotically, but if we want an efficient parallel algorithm, we

must ensure that the ‚.n/ bound on work doesn’t increase.

Figure 26.6 depicts the divide-and-conquer strategy that we’ll use in P-MERGE.

The heart of the algorithm is a recursive auxiliary procedure P-MERGE-AUX that

merges two sorted subarrays of an array A into a subarray of another array B

in parallel. Specifically, P-MERGE-AUX merges AŒp1 W r1� and AŒp2 W r2� into

subarray BŒp3 W r3�, where r3 D p3 C .r1 � p1 C 1/ C .r2 � p2 C 1/ � 1 D
p3 C .r1 � p1/ C .r2 � p2/ C 1.

The key idea of the recursive merging algorithm in P-MERGE-AUX is to split

each of the two sorted subarrays of A around a pivot x, such that all the elements

in the lower part of each subarray are at most x and all the elements in the upper

part of each subarray are at least x. The procedure can then recurse in parallel on

two subtasks: merging the two lower parts, and merging the two upper parts. The

trick is to find a pivot x so that the recursion is not too lopsided. We don’t want a

situation such as that in QUICKSORT on page 183, where bad partitioning elements

lead to a dramatic loss of asymptotic efficiency. We could opt to partition around

a random element, as RANDOMIZED-QUICKSORT on page 192 does, but because

the input subarrays are sorted, P-MERGE-AUX can quickly determine a pivot that

always works well.

Specifically, the recursive merging algorithm picks the pivot x as the middle

element of the larger of the two input subarrays, which we can assume without

loss of generality is AŒp1 W r1�, since otherwise, the two subarrays can just switch

roles. That is, x D AŒq1�, where q1 D b.p1 C r1/=2c. Because AŒp1 W r1� is

sorted, x is a median of the subarray elements: every element in AŒp1 W q1 � 1� is

no more than x, and every element in AŒq1 C 1 W r1� is no less than x. Then the

26.3 Parallel merge sort 777

…

… …
merge mergecopy

…… …

binary search

p1 q1 r1 p2 q2 r2

p3 q3 r3

B

A

x

x

� x

� x� x

� x

� x � x

Figure 26.6 The idea behind P-MERGE-AUX, which merges two sorted subarrays AŒp1 W r1� and

AŒp2 W r2� into the subarray BŒp3 W r3� in parallel. Letting x D AŒq1� (shown in yellow) be a median

of AŒp1 W r1� and q2 be a place in AŒp2 W r2� such that x would fall between AŒq2 � 1� and AŒq2�,

every element in the subarrays AŒp1 W q1 � 1� and AŒp2 W q2 � 1� (shown in orange) is at most x,

and every element in the subarrays AŒq1 C 1 W r1� and AŒq2 C 1 W r2� (shown in blue) is at least x. To

merge, compute the index q3 where x belongs in BŒp3 W r3�, copy x into BŒq3�, and then recursively

merge AŒp1 W q1 � 1� with AŒp2 W q2 � 1� into BŒp3 W q3 � 1� and AŒq1 C 1 W r1� with AŒq2 W r2�

into BŒq3 C 1 W r3�.

algorithm finds the “split point” q2 in the smaller subarray AŒp2 W r2� such that all

the elements in AŒp2 W q2 �1� (if any) are at most x and all the elements in AŒq2 W r2�

(if any) are at least x. Intuitively, the subarray AŒp2 W r2� would still be sorted if x

were inserted between AŒq2�1� and AŒq2� (although the algorithm doesn’t do that).

Since AŒp2 W r2� is sorted, a minor variant of binary search (see Exercise 2.3-6) with

x as the search key can find the split point q2 in ‚.lg n/ time in the worst case. As

we’ll see when we get to the analysis, even if x splits AŒp2 W r2� badly—x is either

smaller than all the subarray elements or larger—we’ll still have at least 1=4 of

the elements in each of the two recursive merges. Thus the larger of the recursive

merges operates on at most 3=4 elements, and the recursion is guaranteed to bottom

out after ‚.lg n/ recursive calls.

Now let’s put these ideas into pseudocode. We start with the serial procedure

FIND-SPLIT-POINT.A; p; r; x/ on the next page, which takes as input a sorted

subarray AŒp W r� and a key x. The procedure returns a split point of AŒp W r�: an

index q in the range p � q � r C 1 such that all the elements in AŒp W q � 1� (if

any) are at most x and all the elements in AŒq W r� (if any) are at least x.

The FIND-SPLIT-POINT procedure uses binary search to find the split point.

Lines 1 and 2 establish the range of indices for the search. Each time through the

while loop, line 5 compares the middle element of the range with the search key x,

and lines 6 and 7 narrow the search range to either the lower half or the upper half

of the subarray, depending on the result of the test. In the end, after the range has

been narrowed to a single index, line 8 returns that index as the split point.

778 Chapter 26 Parallel Algorithms

FIND-SPLIT-POINT.A; p; r; x/

1 low D p // low end of search range

2 high D r C 1 // high end of search range

3 while low < high // more than one element?

4 mid D b.low C high/=2c // midpoint of range

5 if x � AŒmid� // is answer q � mid?

6 high D mid // narrow search to AŒlow W mid�

7 else low D mid C 1 // narrow search to AŒmid C 1 W high�

8 return low

Because FIND-SPLIT-POINT contains no parallelism, its span is just its serial

running time, which is also its work. On a subarray AŒp W r� of size n D r � p C 1,

each iteration of the while loop halves the search range, which means that the loop

terminates after ‚.lg n/ iterations. Since each iteration takes constant time, the

algorithm runs in ‚.lg n/ (worst-case) time. Thus the procedure has work and

span ‚.lg n/.

Let’s now look at the pseudocode for the parallel merging procedure P-MERGE

on the next page. Most of the pseudocode is devoted to the recursive procedure

P-MERGE-AUX. The procedure P-MERGE itself is just a “wrapper” that sets

up for P-MERGE-AUX. It allocates a new array BŒp W r� to hold the output of

P-MERGE-AUX in line 1. It then calls P-MERGE-AUX in line 2, passing the in-

dices of the two subarrays to be merged and providing B as the output destination

of the merged result, starting at index p. After P-MERGE-AUX returns, lines 3–4

perform a parallel copy of the output BŒp W r� into the subarray AŒp W r�, which is

where P-MERGE-SORT expects it.

The P-MERGE-AUX procedure is the interesting part of the algorithm. Let’s

start by understanding the parameters of this recursive parallel procedure. The

input array A and the four indices p1; r1; p2; r2 specify the subarrays AŒp1 W r1� and

AŒp2 W r2� to be merged. The array B and the index p3 indicate that the merged

result should be stored into BŒp3 W r3�, where r3 D p3 C .r1 � p1/C .r2 � p2/C 1,

as we saw earlier. The end index r3 of the output subarray is not needed by the

pseudocode, but it helps conceptually to name the end index, as in the comment in

line 13.

The procedure begins by checking the base case of the recursion and doing some

bookkeeping to simplify the rest of the pseudocode. Lines 1 and 2 test whether the

two subarrays are both empty, in which case the procedure returns. Line 3 checks

whether the first subarray contains fewer elements than the second subarray. Since

the number of elements in the first subarray is r1 � p1 C 1 and the number in the

second subarray is r2 � p2 C 1, the test omits the two “C1’s.” If the first subarray

26.3 Parallel merge sort 779

P-MERGE.A; p; q; r/

1 let BŒp W r� be a new array // allocate scratch array

2 P-MERGE-AUX.A; p; q; q C 1; r; B; p/ // merge from A into B

3 parallel for i D p to r // copy B back to A in parallel

4 AŒi� D BŒi�

P-MERGE-AUX.A; p1; r1; p2; r2; B; p3/

1 if p1 > r1 and p2 > r2 // are both subarrays empty?

2 return

3 if r1 � p1 < r2 � p2 // second subarray bigger?

4 exchange p1 with p2 // swap subarray roles

5 exchange r1 with r2

6 q1 D b.p1 C r1/=2c // midpoint of AŒp1 W r1�

7 x D AŒq1� // median of AŒp1 W r1� is pivot x

8 q2 D FIND-SPLIT-POINT.A; p2; r2; x/ // split AŒp2 W r2� around x

9 q3 D p3 C .q1 � p1/ C .q2 � p2/ // where x belongs in B : : :

10 BŒq3� D x // : : : put it there

11 // Recursively merge AŒp1 W q1 � 1� and AŒp2 W q2 � 1� into BŒp3 W q3 � 1�.

12 spawn P-MERGE-AUX.A; p1; q1 � 1; p2; q2 � 1; B; p3/

13 // Recursively merge AŒq1 C 1 W r1� and AŒq2 W r2� into BŒq3 C 1 W r3�.

14 spawn P-MERGE-AUX.A; q1 C 1; r1; q2; r2; B; q3 C 1/

15 sync // wait for spawns

is the smaller of the two, lines 4 and 5 switch the roles of the subarrays so that

AŒp1; r1� refers to the larger subarray for the balance of the procedure.

We’re now at the crux of P-MERGE-AUX: implementing the parallel divide-and-

conquer strategy. As we continue our pseudocode walk, you may find it helpful to

refer again to Figure 26.6.

First the divide step. Line 6 computes the midpoint q1 of AŒp1 W r1�, which in-

dexes a median x D AŒq1� of this subarray to be used as the pivot, and line 7

determines x itself. Next, line 8 uses the FIND-SPLIT-POINT procedure to find the

index q2 in AŒp2 W r2� such that all elements in AŒp2 W q2 � 1� are at most x and all

the elements in AŒq2 W r2� are at least x. Line 9 computes the index q3 of the element

that divides the output subarray BŒp3 W r3� into BŒp3 W q3 � 1� and BŒq3 C 1 W r3�,

and then line 10 puts x directly into BŒq3�, which is where it belongs in the output.

Next is the conquer step, which is where the parallel recursion occurs. Lines 12

and 14 each spawn P-MERGE-AUX to recursively merge from A into B , the first

to merge the smaller elements and the second to merge the larger elements. The

780 Chapter 26 Parallel Algorithms

sync statement in line 15 ensures that the subproblems finish before the procedure

returns.

There is no combine step, as BŒp W r� already contains the correct sorted output.

Work/span analysis of parallel merging

Let’s first analyze the worst-case span T1.n/ of P-MERGE-AUX on input subar-

rays that together contain a total of n elements. The call to FIND-SPLIT-POINT in

line 8 contributes ‚.lg n/ to the span in the worst case, and the procedure performs

at most a constant amount of additional serial work outside of the two recursive

spawns in lines 12 and 14.

Because the two recursive spawns operate logically in parallel, only one of them

contributes to the overall worst-case span. We claimed earlier that neither recur-

sive invocation ever operates on more than 3n=4 elements. Let’s see why. Let

n1 D r1 � p1 C 1 and n2 D r2 � p2 C 1, where n D n1 C n2, be the sizes of the

two subarrays when line 6 starts executing, that is, after we have established that

n2 � n1 by swapping the roles of the two subarrays, if necessary. Since the pivot x

is a median of of AŒp1 W r1�, in the worst case, a recursive merge involves at most

n1=2 elements of AŒp1 W r1�, but it might involve all n2 of the elements of AŒp2 W r2�.

Thus we can bound the number of elements involved in a recursive invocation of

P-MERGE-AUX by

n1=2 C n2 D .2n1 C 4n2/=4

� .3n1 C 3n2/=4 (since n2 � n1)

D 3n=4 ;

proving the claim.

The worst-case span of P-MERGE-AUX can therefore be described by the fol-

lowing recurrence:

T1.n/ D T1.3n=4/ C ‚.lg n/ : (26.7)

Because this recurrence falls under case 2 of the master theorem with k D 1, its

solution is T1.n/ D ‚.lg2 n/.

Now let’s verify that the work T1.n/ of P-MERGE-AUX on n elements is linear.

A lower bound of �.n/ is straightforward, since each of the n elements is copied

from array A to array B . We’ll show that T1.n/ D O.n/ by deriving a recurrence

for the worst-case work. The binary search in line 8 costs ‚.lg n/ in the worst case,

which dominates the other work outside of the recursive spawns. For the recursive

spawns, observe that although lines 12 and 14 might merge different numbers of

elements, the two recursive spawns together merge at most n � 1 elements (since

x D AŒq� is not merged). Moreover, as we saw when analyzing the span, a recur-

sive spawn operates on at most 3n=4 elements. We therefore obtain the recurrence

26.3 Parallel merge sort 781

T1.n/ D T1.˛n/ C T1..1 � ˛/n/ C ‚.lg n/ ; (26.8)

where ˛ lies in the range 1=4 � ˛ � 3=4. The value of ˛ can vary from one

recursive invocation to another.

We’ll use the substitution method (see Section 4.3) to prove that the above re-

currence (26.8) has solution T1.n/ D O.n/. (You could also use the Akra-Bazzi

method from Section 4.7.) Assume that T1.n/ � c1n � c2 lg n for some posi-

tive constants c1 and c2. Using the properties of logarithms on pages 66–67—in

particular, to deduce that lg ˛ C lg.1 � ˛/ D �‚.1/—substitution yields

T1.n/ � .c1˛n � c2 lg.˛n// C .c1.1 � ˛/n � c2 lg..1 � ˛/n// C ‚.lg n/

D c1.˛ C .1 � ˛//n � c2.lg.˛n/ C lg..1 � ˛/n// C ‚.lg n/

D c1n � c2.lg ˛ C lg n C lg.1 � ˛/ C lg n/ C ‚.lg n/

D c1n � c2 lg n � c2.lg n C lg ˛ C lg.1 � ˛// C ‚.lg n/

D c1n � c2 lg n � c2.lg n � ‚.1// C ‚.lg n/

� c1n � c2 lg n ;

if we choose c2 large enough that the c2.lg n � ‚.1// term dominates the ‚.lg n/

term for sufficiently large n. Furthermore, we can choose c1 large enough to satisfy

the implied ‚.1/ base cases of the recurrence, completing the induction. The lower

and upper bounds of �.n/ and O.n/ give T1.n/ D ‚.n/, asymptotically the same

work as for serial merging.

The execution of the pseudocode in the P-MERGE procedure itself does not add

asymptotically to the work and span of P-MERGE-AUX. The parallel for loop

in lines 3–4 has ‚.lg n/ span due to the loop control, and each iteration runs in

constant time. Thus the ‚.lg2 n/ span of P-MERGE-AUX dominates, yielding

‚.lg2 n/ span overall for P-MERGE. The parallel for loop contains ‚.n/ work,

matching the asymptotic work of P-MERGE-AUX and yielding ‚.n/ work overall

for P-MERGE.

Analysis of parallel merge sort

The “heavy lifting” is done. Now that we have determined the work and span of

P-MERGE, we can analyze P-MERGE-SORT. Let T1.n/ and T1.n/ be the work

and span, respectively, of P-MERGE-SORT on an array of n elements. The call to

P-MERGE in line 10 of P-MERGE-SORT dominates the costs of lines 1–3, for both

work and span. Thus we obtain the recurrence

T1.n/ D 2T1.n=2/ C ‚.n/

for the work of P-MERGE-SORT, and we obtain the recurrence

T1.n/ D T1.n=2/ C ‚.lg2 n/

782 Chapter 26 Parallel Algorithms

for its span. The work recurrence has solution T1.n/ D ‚.n lg n/ by case 2 of the

master theorem with k D 0. The span recurrence has solution T1.n/ D ‚.lg3 n/,

also by case 2 of the master theorem, but with k D 2.

Parallel merging gives P-MERGE-SORT a parallelism advantage over P-NAIVE-

MERGE-SORT. The parallelism of P-NAIVE-MERGE-SORT, which calls the serial

MERGE procedure, is only ‚.lg n/. For P-MERGE-SORT, the parallelism is

T1.n/=T1.n/ D ‚.n lg n/=‚.lg3 n/

D ‚.n= lg2 n/ ;

which is much better, both in theory and in practice. A good implementation in

practice would sacrifice some parallelism by coarsening the base case in order to

reduce the constants hidden by the asymptotic notation. For example, you could

switch to an efficient serial sort, perhaps quicksort, when the number of elements

to be sorted is sufficiently small.

Exercises

26.3-1

Explain how to coarsen the base case of P-MERGE.

26.3-2

Instead of finding a median element in the larger subarray, as P-MERGE does, sup-

pose that the merge procedure finds a median of all the elements in the two sorted

subarrays using the result of Exercise 9.3-10. Give pseudocode for an efficient

parallel merging procedure that uses this median-finding procedure. Analyze your

algorithm.

26.3-3

Give an efficient parallel algorithm for partitioning an array around a pivot, as is

done by the PARTITION procedure on page 184. You need not partition the array

in place. Make your algorithm as parallel as possible. Analyze your algorithm.

(Hint: You might need an auxiliary array and might need to make more than one

pass over the input elements.)

26.3-4

Give a parallel version of FFT on page 890. Make your implementation as parallel

as possible. Analyze your algorithm.

? 26.3-5

Show how to parallelize SELECT from Section 9.3. Make your implementation as

parallel as possible. Analyze your algorithm.

Problems for Chapter 26 783

Problems

26-1 Implementing parallel loops using recursive spawning

Consider the parallel procedure SUM-ARRAYS for performing pairwise addition

on n-element arrays AŒ1 W n� and BŒ1 W n�, storing the sums in C Œ1 W n�.

SUM-ARRAYS.A; B; C; n/

1 parallel for i D 1 to n

2 C Œi� D AŒi� C BŒi�

a. Rewrite the parallel loop in SUM-ARRAYS using recursive spawning in the

manner of P-MAT-VEC-RECURSIVE. Analyze the parallelism.

Consider another implementation of the parallel loop in SUM-ARRAYS given by

the procedure SUM-ARRAYS
0, where the value grain-size must be specified.

SUM-ARRAYS
0.A; B; C; n/

1 grain-size D ‹ // to be determined

2 r D dn=grain-sizee
3 for k D 0 to r � 1

4 spawn ADD-SUBARRAY.A; B; C; k � grain-size C 1;

min f.k C 1/ � grain-size; ng/
5 sync

ADD-SUBARRAY.A; B; C; i; j /

1 for k D i to j

2 C Œk� D AŒk� C BŒk�

b. Suppose that you set grain-size D 1. What is the resulting parallelism?

c. Give a formula for the span of SUM-ARRAYS
0 in terms of n and grain-size.

Derive the best value for grain-size to maximize parallelism.

26-2 Avoiding a temporary matrix in recursive matrix multiplication

The P-MATRIX-MULTIPLY-RECURSIVE procedure on page 772 must allocate a

temporary matrix D of size n � n, which can adversely affect the constants hidden

by the ‚-notation. The procedure has high parallelism, however: ‚.n3= log2 n/.

784 Chapter 26 Parallel Algorithms

For example, ignoring the constants in the ‚-notation, the parallelism for mul-

tiplying 1000 � 1000 matrices comes to approximately 10003=102 D 107, since

lg 1000 � 10. Most parallel computers have far fewer than 10 million processors.

a. Parallelize MATRIX-MULTIPLY-RECURSIVE without using temporary matri-

ces so that it retains its ‚.n3/ work. (Hint: Spawn the recursive calls, but insert

a sync in a judicious location to avoid races.)

b. Give and solve recurrences for the work and span of your implementation.

c. Analyze the parallelism of your implementation. Ignoring the constants in the

‚-notation, estimate the parallelism on 1000 � 1000 matrices. Compare with

the parallelism of P-MATRIX-MULTIPLY-RECURSIVE, and discuss whether

the trade-off would be worthwhile.

26-3 Parallel matrix algorithms

Before attempting this problem, it may be helpful to read Chapter 28.

a. Parallelize the LU-DECOMPOSITION procedure on page 827 by giving pseu-

docode for a parallel version of this algorithm. Make your implementation as

parallel as possible, and analyze its work, span, and parallelism.

b. Do the same for LUP-DECOMPOSITION on page 830.

c. Do the same for LUP-SOLVE on page 824.

d. Using equation (28.14) on page 835, write pseudocode for a parallel algorithm

to invert a symmetric positive-definite matrix. Make your implementation as

parallel as possible, and analyze its work, span, and parallelism.

26-4 Parallel reductions and scan (prefix) computations

A ˝-reduction of an array xŒ1 W n�, where ˝ is an associative operator, is the value

y D xŒ1� ˝ xŒ2� ˝ � � � ˝ xŒn�. The REDUCE procedure computes the ˝-reduction

of a subarray xŒi W j � serially.

REDUCE.x; i; j /

1 y D xŒi �

2 for k D i C 1 to j

3 y D y ˝ xŒk�

4 return y

Problems for Chapter 26 785

a. Design and analyze a parallel algorithm P-REDUCE that uses recursive spawn-

ing to perform the same function with ‚.n/ work and ‚.lg n/ span.

A related problem is that of computing a ˝-scan, sometimes called a ˝-prefix

computation, on an array xŒ1 W n�, where ˝ is once again an associative opera-

tor. The ˝-scan, implemented by the serial procedure SCAN, produces the ar-

ray yŒ1 W n� given by

yŒ1� D xŒ1� ;

yŒ2� D xŒ1� ˝ xŒ2� ;

yŒ3� D xŒ1� ˝ xŒ2� ˝ xŒ3� ;

:::

yŒn� D xŒ1� ˝ xŒ2� ˝ xŒ3� ˝ � � � ˝ xŒn� ;

that is, all prefixes of the array x “summed” using the ˝ operator.

SCAN.x; n/

1 let yŒ1 W n� be a new array

2 yŒ1� D xŒ1�

3 for i D 2 to n

4 yŒi � D yŒi � 1� ˝ xŒi �

5 return y

Parallelizing SCAN is not straightforward. For example, simply changing the for

loop to a parallel for loop would create races, since each iteration of the loop body

depends on the previous iteration. The procedures P-SCAN-1 and P-SCAN-1-AUX

perform the ˝-scan in parallel, albeit inefficiently.

P-SCAN-1.x; n/

1 let yŒ1 W n� be a new array

2 P-SCAN-1-AUX.x; y; 1; n/

3 return y

P-SCAN-1-AUX.x; y; i; j /

1 parallel for l D i to j

2 yŒl� D P-REDUCE.x; 1; l/

b. Analyze the work, span, and parallelism of P-SCAN-1.

786 Chapter 26 Parallel Algorithms

The procedures P-SCAN-2 and P-SCAN-2-AUX use recursive spawning to per-

form a more efficient ˝-scan.

P-SCAN-2.x; n/

1 let yŒ1 W n� be a new array

2 P-SCAN-2-AUX.x; y; 1; n/

3 return y

P-SCAN-2-AUX.x; y; i; j /

1 if i == j

2 yŒi � D xŒi �

3 else k D b.i C j /=2c
4 spawn P-SCAN-2-AUX.x; y; i; k/

5 P-SCAN-2-AUX.x; y; k C 1; j /

6 sync

7 parallel for l D k C 1 to j

8 yŒl � D yŒk� ˝ yŒl �

c. Argue that P-SCAN-2 is correct, and analyze its work, span, and parallelism.

To improve on both P-SCAN-1 and P-SCAN-2, perform the ˝-scan in two dis-

tinct passes over the data. The first pass gathers the terms for various contigu-

ous subarrays of x into a temporary array t , and the second pass uses the terms

in t to compute the final result y. The pseudocode in the procedures P-SCAN-3,

P-SCAN-UP, and P-SCAN-DOWN on the facing page implements this strategy, but

certain expressions have been omitted.

d. Fill in the three missing expressions in line 8 of P-SCAN-UP and lines 5 and 6 of

P-SCAN-DOWN. Argue that with the expressions you supplied, P-SCAN-3 is

correct. (Hint: Prove that the value v passed to P-SCAN-DOWN.v; x; t; y; i; j /

satisfies v D xŒ1� ˝ xŒ2� ˝ � � � ˝ xŒi � 1�.)

e. Analyze the work, span, and parallelism of P-SCAN-3.

f. Describe how to rewrite P-SCAN-3 so that it doesn’t require the use of the

temporary array t .

? g. Give an algorithm P-SCAN-4.x; n/ for a scan that operates in place. It should

place its output in x and require only constant auxiliary storage.

h. Describe an efficient parallel algorithm that uses a C-scan to determine whether

a string of parentheses is well formed. For example, the string (()())()

Problems for Chapter 26 787

is well formed, but the string (()))(() is not. (Hint: Interpret (as a 1

and) as a �1, and then perform a C-scan.)

P-SCAN-3.x; n/

1 let yŒ1 W n� and t Œ1 W n� be new arrays

2 yŒ1� D xŒ1�

3 if n > 1

4 P-SCAN-UP.x; t; 2; n/

5 P-SCAN-DOWN.xŒ1�; x; t; y; 2; n/

6 return y

P-SCAN-UP.x; t; i; j /

1 if i == j

2 return xŒi �

3 else

4 k D b.i C j /=2c
5 t Œk� D spawn P-SCAN-UP.x; t; i; k/

6 right D P-SCAN-UP.x; t; k C 1; j /

7 sync

8 return // fill in the blank

P-SCAN-DOWN.v; x; t; y; i; j /

1 if i == j

2 yŒi � D v ˝ xŒi �

3 else

4 k D b.i C j /=2c
5 spawn P-SCAN-DOWN. ; x; t; y; i; k/ // fill in the blank

6 P-SCAN-DOWN. ; x; t; y; k C 1; j / // fill in the blank

7 sync

26-5 Parallelizing a simple stencil calculation

Computational science is replete with algorithms that require the entries of an array

to be filled in with values that depend on the values of certain already computed

neighboring entries, along with other information that does not change over the

course of the computation. The pattern of neighboring entries does not change

during the computation and is called a stencil. For example, Section 14.4 presents

a stencil algorithm to compute a longest common subsequence, where the value in

entry cŒi; j � depends only on the values in cŒi �1; j �, cŒi; j �1�, and cŒi �1; j �1�,

788 Chapter 26 Parallel Algorithms

as well as the elements xi and yj within the two sequences given as inputs. The

input sequences are fixed, but the algorithm fills in the two-dimensional array c so

that it computes entry cŒi; j � after computing all three entries cŒi �1; j �, cŒi; j �1�,

and cŒi � 1; j � 1�.

This problem examines how to use recursive spawning to parallelize a simple

stencil calculation on an n � n array A in which the value placed into entry AŒi; j �

depends only on values in AŒi 0; j 0�, where i 0 � i and j 0 � j (and of course, i 0 ¤ i

or j 0 ¤ j). In other words, the value in an entry depends only on values in entries

that are above it and/or to its left, along with static information outside of the array.

Furthermore, we assume throughout this problem that once the entries upon which

AŒi; j � depends have been filled in, the entry AŒi; j � can be computed in ‚.1/ time

(as in the LCS-LENGTH procedure of Section 14.4).

Partition the n � n array A into four n=2 � n=2 subarrays as follows:

A D
�

A11 A12

A21 A22

�

: (26.9)

You can immediately fill in subarray A11 recursively, since it does not depend on

the entries in the other three subarrays. Once the computation of A11 finishes, you

can fill in A12 and A21 recursively in parallel, because although they both depend

on A11, they do not depend on each other. Finally, you can fill in A22 recursively.

a. Give parallel pseudocode that performs this simple stencil calculation using

a divide-and-conquer algorithm SIMPLE-STENCIL based on the decomposi-

tion (26.9) and the discussion above. (Don’t worry about the details of the

base case, which depends on the specific stencil.) Give and solve recurrences

for the work and span of this algorithm in terms of n. What is the parallelism?

b. Modify your solution to part (a) to divide an n � n array into nine n=3 � n=3

subarrays, again recursing with as much parallelism as possible. Analyze this

algorithm. How much more or less parallelism does this algorithm have com-

pared with the algorithm from part (a)?

c. Generalize your solutions to parts (a) and (b) as follows. Choose an integer

b � 2. Divide an n � n array into b2 subarrays, each of size n=b � n=b,

recursing with as much parallelism as possible. In terms of n and b, what

are the work, span, and parallelism of your algorithm? Argue that, using this

approach, the parallelism must be o.n/ for any choice of b � 2. (Hint: For this

argument, show that the exponent of n in the parallelism is strictly less than 1

for any choice of b � 2.)

d. Give pseudocode for a parallel algorithm for this simple stencil calculation that

achieves ‚.n= lg n/ parallelism. Argue using notions of work and span that

Notes for Chapter 26 789

the problem has ‚.n/ inherent parallelism. Unfortunately, simple fork-join

parallelism does not let you achieve this maximal parallelism.

26-6 Randomized parallel algorithms

Like serial algorithms, parallel algorithms can employ random-number generators.

This problem explores how to adapt the measures of work, span, and parallelism to

handle the expected behavior of randomized task-parallel algorithms. It also asks

you to design and analyze a parallel algorithm for randomized quicksort.

a. Explain how to modify the work law (26.2), span law (26.3), and greedy sched-

uler bound (26.4) to work with expectations when TP , T1, and T1 are all ran-

dom variables.

b. Consider a randomized parallel algorithm for which 1% of the time, T1 D 104

and T10;000 D 1, but for the remaining 99% of the time, T1 D T10;000 D 109.

Argue that the speedup of a randomized parallel algorithm should be defined as

E ŒT1� =E ŒTP �, rather than E ŒT1=TP �.

c. Argue that the parallelism of a randomized task-parallel algorithm should be

defined as the ratio E ŒT1� =E ŒT1�.

d. Parallelize the RANDOMIZED-QUICKSORT algorithm on page 192 by using

recursive spawning to produce P-RANDOMIZED-QUICKSORT. (Do not paral-

lelize RANDOMIZED-PARTITION.)

e. Analyze your parallel algorithm for randomized quicksort. (Hint: Review the

analysis of RANDOMIZED-SELECT on page 230.)

f. Parallelize RANDOMIZED-SELECT on page 230. Make your implementation

as parallel as possible. Analyze your algorithm. (Hint: Use the partitioning

algorithm from Exercise 26.3-3.)

Chapter notes

Parallel computers and algorithmic models for parallel programming have been

around in various forms for years. Prior editions of this book included material on

sorting networks and the PRAM (Parallel Random-Access Machine) model. The

data-parallel model [58, 217] is another popular algorithmic programming model,

which features operations on vectors and matrices as primitives. The notion of

sequential consistency is due to Lamport [275].

Graham [197] and Brent [71] showed that there exist schedulers achieving

the bound of Theorem 26.1. Eager, Zahorjan, and Lazowska [129] showed that

790 Chapter 26 Parallel Algorithms

any greedy scheduler achieves this bound and proposed the methodology of us-

ing work and span (although not by those names) to analyze parallel algorithms.

Blelloch [57] developed an algorithmic programming model based on work and

span (which he called “depth”) for data-parallel programming. Blumofe and

Leiserson [63] gave a distributed scheduling algorithm for task-parallel computa-

tions based on randomized “work-stealing” and showed that it achieves the bound

E ŒTP � � T1=P C O.T1/. Arora, Blumofe, and Plaxton [20] and Blelloch, Gib-

bons, and Matias [61] also provided provably good algorithms for scheduling task-

parallel computations. The recent literature contains many algorithms and strate-

gies for scheduling parallel programs.

The parallel pseudocode and programming model were influenced by Cilk [290,

291, 383, 396]. The open-source project OpenCilk (www.opencilk.org) provides

Cilk programming as an extension to the C and C++ programming languages. All

of the parallel algorithms in this chapter can be coded straightforwardly in Cilk.

Concerns about nondeterministic parallel programs were expressed by Lee [281]

and Bocchino, Adve, Adve, and Snir [64]. The algorithms literature contains many

algorithmic strategies (see, for example, [60, 85, 118, 140, 160, 282, 283, 412,

461]) for detecting races and extending the fork-join model to avoid or safely em-

brace various kinds of nondeterminism. Blelloch, Fineman, Gibbons, and Shun

[59] showed that deterministic parallel algorithms can often be as fast as, or even

faster than, their nondeterministic counterparts.

Several of the parallel algorithms in this chapter appeared in unpublished lecture

notes by C. E. Leiserson and H. Prokop and were originally implemented in Cilk.

The parallel merge-sorting algorithm was inspired by an algorithm due to Akl [12].

Index

This index uses the following conventions. Numbers are alphabetized as if spelled

out; for example, “2-3-4 tree” is indexed as if it were “two-three-four tree.” When

an entry refers to a place other than the main text, the page number is followed by

a tag: ex. for exercise, pr. for problem, fig. for figure, and n. for footnote. A tagged

page number often indicates the first page of an exercise or problem, which is not

necessarily the page on which the reference actually appears.

� (much-less-than relation), 761

ADD-SUBARRAY, 784 pr.

algorithm

nondeterministic, 765

parallel, see parallel algorithm

binary search

in parallel merging, 777–778

call

in a parallel computation, 753

centralized scheduler, 759

chess-playing program, 768–769

child

in a parallel computation, 753

Cilk, 750, 790

cluster

for parallel computing, 748

coarsening leaves of recursion

when recursively spawning, 764

complete step, 759

composition

of parallel traces, 762 fig.

computational depth, see span

computation dag, 754 n.

consistency

sequential, 756

critical path

of a task-parallel trace, 757

data-parallel model, 790

determinacy race, 765–768

deterministic algorithm

parallel, 765

directed acyclic graph

for representing a parallel computation, 754

distributed memory, 748

divide-and-conquer method

for matrix multiplication, 771–775, 783 pr.

for merge sort, 775–783

for Strassen’s algorithm, 773–774

FIB, 751

Fibonacci numbers

computation of, 750–753

FIND-SPLIT-POINT, 778

fork-join parallelism, 749–770

see also parallel algorithm

fork-join scheduling, 759–761, 769 ex.

grain size in a parallel algorithm, 783 pr.

greedy method

for task-parallel scheduling, 759–761,

769 ex.

greedy scheduler, 759

Habanero-Java, 750

ideal parallel computer, 756

incomplete step, 759

inverse

792 Index

of a matrix, 784 pr.

invocation tree, 756

Java Fork-Join Framework, 750

keywords, in pseudocode

parallel, 750, 752–754, 763

linear speedup, 758

load instruction, 756

logical parallelism, 753

loop, in pseudocode

parallel, 762–765

lower bounds

for task-parallel computations, 757

LU decomposition

parallel algorithm for, 784 pr.

LUP decomposition

parallel algorithm for, 784 pr.

matrix

inverse of, 784 pr.

product of, with a vector, 763–765, 767–768

matrix multiplication

divide-and-conquer method for, 771–775,

783 pr.

parallel algorithm for, 771–775, 783 pr.

Strassen’s algorithm for, 773–774

matrix-vector multiplication, 763–765,

767–768

merge sort

parallel algorithm for, 775–783

merging

parallel algorithm for, 776–780

much-less-than (�), 761

multicore computer, 748

multiplication

matrix-vector, 763–765, 767–768

mutually noninterfering strands, 767

network

for sorting, 790

nondeterministic algorithm, 765

online task-parallel scheduler, 759

OpenMP, 750

parallel algorithm, 748–790

for computing Fibonacci numbers, 750–753

grain size in, 783 pr.

for LU decomposition, 784 pr.

for LUP decomposition, 784 pr.

for matrix inversion, 784 pr.

for matrix multiplication, 771–775, 783 pr.

for matrix-vector product, 763–765,

767–768

for merge sort, 775–783

for merging, 776–780

for prefix computation, 785 pr.

for quicksort, 789 pr.

randomized, 789 pr.

for reduction, 785 pr.

for a simple stencil calculation, 788 pr.

for solving systems of linear equations,

784 pr.

Strassen’s algorithm, 773–774

for well-formed parentheses, 787 pr.

parallel computer, 748, 756

parallel for, in pseudocode, 763

parallelism

logical, 753

of a randomized parallel algorithm, 789 pr.

spawning, 753

syncing, 754

of a task-parallel computation, 758

parallel keywords, 750, 752, 763

parallel loop, 762–765, 783 pr.

parallel prefix, 785 pr.

parallel random-access machine, 790

parallel slackness, 758

rule of thumb, 761

parallel, strands logically in, 756

parallel trace, 754–756

series-parallel composition of, 762 fig.

parent

in a parallel computation, 753

perfect linear speedup, 758

P-FIB, 753

P-MATRIX-MULTIPLY, 771

P-MATRIX-MULTIPLY-RECURSIVE, 772

P-MAT-VEC, 763

P-MAT-VEC-RECURSIVE, 763

P-MAT-VEC-WRONG, 768

P-MERGE, 779

P-MERGE-AUX, 779

P-MERGE-SORT, 775

P-NAIVE-MERGE-SORT, 776

PRAM, 790

prefix computation, 785 pr.

probabilistic analysis

and parallel algorithms, 789 pr.

P-SCAN-1, 786 pr.

Index 793

P-SCAN-1-AUX, 786 pr.

P-SCAN-2, 786 pr.

P-SCAN-2-AUX, 786 pr.

P-SCAN-3, 787 pr.

P-SCAN-DOWN, 787 pr.

P-SCAN-UP, 787 pr.

P-TRANSPOSE, 770 ex.

quicksort

parallel algorithm for, 789 pr.

race condition, 765–768

RACE-EXAMPLE, 766

random-access machine

parallel, 790

randomized algorithm

parallel, 789 pr.

REDUCE, 785 pr.

reduction, of an array, 785 pr.

register, 756

running time

parallel, 757–758

scan, 785 pr.

SCAN, 785 pr.

scheduler for task-parallel computations, 753,

759–761, 769 ex., 790

searching

binary search, 777–778

sequential consistency, 756

serial algorithm versus parallel algorithm, 748

serial projection, 750, 753

series

strands logically in, 756

series-parallel composition of parallel traces,

762 fig.

shared memory, 748

slackness

parallel, 758

sorting, 775–783

merge sort, 775–783

parallel merge sort, 775–783

parallel quicksort, 789 pr.

sorting network, 790

span, 757

span law, 758

spawn, in pseudocode, 752–754

spawning, 753

speedup, 758

of a randomized parallel algorithm, 789 pr.

stencil, 788 pr.

store instruction, 756

strand, 754

mutually noninterfering, 767

Strassen’s algorithm

parallel algorithm for, 773–774

SUM-ARRAYS, 783 pr.

SUM-ARRAYS0, 784 pr.

supercomputer, 748

symmetric positive-definite matrix

inverse of, 784 pr.

sync, in pseudocode, 752–754

system of linear equations, 784 pr.

task parallelism, 749

see also parallel algorithm

Task Parallel Library, 750

task-parallel scheduling, 759–761, 769 ex.

thread, 748

Threading Building Blocks, 750

thread parallelism, 748

trace, 754–756

series-parallel composition of, 762 fig.

work, 757

work law, 757

work-stealing scheduling algorithm, 790

X10, 750

