Software Performance Engineering February 2, 2025
Michigan State University CSE 491
Xuhao Chen Handout 6

Homework 3: Vectorization

Due: 10:00 .M. (ET) on Tuesday, February 11, 2025
(Last Updated: February 1, 2025)

In this homework you will experiment with vectorization. You will practice examining and comparing the
LLVM IR and assembly outputs of clang for vectorized code. You will examine cases when clang can and
cannot vectorize code. You will experiment with compiler builtins to vectorize code by hand.

Vectorization is a general optimization technique that can buy you an order of magnitude performance
increase in some cases. It is also a delicate operation. On the one hand, vectorization is automatic: when
clang is told to optimize aggressively, it will automatically try to vectorize every loop in your program.
On the other hand, very small changes to loop structure cause clang to give up and not vectorize at all.
Furthermore, these small changes may allow your code to vectorize but not yield the expected speedup. We
will discuss how to identify these cases so that you can get the most out of your vector units.

Contents

1 Gettingstarted 1
Vectorization in clang L e e e e e e e 2
21 Examplel e 3
22 Example2 e 6
23 Example3 e 8

3 Optimizing matrix multiplication using vectorization 8
3.1 Autovectorization of matrix multiplication 0. 8
3.2 Data types and vectorization L L 11
3.3 Further optimization by reordering operations 11

4 Turn-in ... e 14

1 Getting started

You can get this assignment’s code using GitHub:

$ git clone git@github.com:CSE491-spring25/homework3_<your_netid>.git homework3

This repository contains a compilervec/ subdirectory and a matmul/ subdirectory. The compilervec/
subdirectory contains the code for Section 2 and the first five write-up questions. The matmul/
subdirectory contains code for Section 3.

Handout 6 — Homework 3: Vectorization 2

o1 #include <stdint.h>
02 #include <stdlib.h>
03 #include <math.h>

05 #define SIZE (1L << 16)

o7 void test(uint8_t * a, uint8_t * b) {
08 uint64_t i;

10 for (i = 0; i < SIZE; i++) {
1 ali] += b[il;

12 }

1B 7

Figure 1: Original C code in example1-0.c.

Submitting your solutions

We will use the same submission procedures as in Homework 2. Submit your write-up on
Gradescope and your code via Git by the deadline stated at the top of this handout. For each
write-up question (some write-ups include multiple questions, e.g., write-up 10), respond with a short
(1-3 sentence) response or a code snippet (if requested). Please ensure that all the times you quote
are obtained with telerun.

2 Vectorization in clang

Consider a loop that performs an elementwise operation, such as addition, between two inde-
pendent arrays A and B, storing the result in array C. This loop is an example of a data parallel
loop, since the data processed in distinct iterations i; and i, can be safely distributed across dif-
ferent hardware processing elements and processed in parallel. Compilers can take advantage
of data parallelism using vectorization, which means directing the hardware to process different
data elements in distinct lanes of the processor’s vector units. Vector units perform the same
operation simultaneously on every lane of the vector unit. This pattern of parallel processing
is called single instruction, multiple data, or SIMD. Vectorization is a delicate operation: very
small changes to loop structure may cause clang to give up and not vectorize at all, or to vec-
torize your code but not yield the expected speedup. Occasionally, unvectorized code may be
faster than vectorized code. Before we can understand this fragility, we must get a handle on
how to interpret what clang is actually doing when it vectorizes code. In Section 3, you will see
the actual performance impacts of vectorizing code.

Handout 6 — Homework 3: Vectorization 3

o1 examplel.c:12:3: remark: vectorized loop (vectorization width: 16, interleaved count: 2)
02 [-Rpass=loop-vectorize]

i for (i = 0; i < SIZE; i++) {

04 A

Figure 2: Example vectorization report from compiling example1.c. For more information on autovector-
ization reports see https://1lvm.org/docs/Vectorizers.html

2.1 Example 1

We will start with the simple loop shown in Figure 1, which is available in the compilervec/
subdirectory of the Git repository. Using this example, we shall examine the LLVM IR and
assembly code clang generates for a simple vectorizable loop. We shall also examine some simple
ways to control how clang vectorizes code. The provided Makefile allows you to generate the
compiled and optimized LLVM IR for this vectorizable loop using the LLVMIR=1 flag, as follows:

‘$ make clean; make LLVMIR=1 VECTORIZE=1 examplel-0.0 ‘

Similarly, you can generate the assembly code for this example using the ASSEMBLE=1 flag:

|$ make ASSEMBLE=1 VECTORIZE=1 examplel-0.0

The VECTORIZE=1 flag directs clang to generate a vectorization report, which indicates which
loops in the program were successfully vectorized and which were not. You should see the
vectorization report shown in Figure 2 as output when you run either of these commands. This
report indicates that the loop has been vectorized. But this report doesn’t tell the whole story,
as we shall see when we investigate the LLVM IR and assembly outputs for the example. Let’s
tirst inspect the LLVM IR output from running the above make command with LLVMIR=1. This
command will produce the file example1-0.11, which contains the optimized LLVM IR for the
example. The vectorized operations in the LLVM IR output are those that operate on an LLVM
vector type, such as <16 x 18> in example1-0.11. Note: For all examples, you might find additional
content in the compiled LLVM IR and assembly outputs, such as !dbg metadata tags and calls
to @1 1vm.dbg.value in the LLVM IR, and additional comments, labels, and .loc directives in
the assembly output. This additional output reflects the debugging symbols compiled with the
example codes and can safely be ignored when studying vectorization.

Now run the make command above with the flag ASSEMBLE=1 to generate the assembly code for
this example. The command will generate the file example1-0.s, which contains the assembly
code for this example.

Both the LLVM IR and assembly output show that clang uses multiversioning to vectorize the
loop. Consider the LLVM IR, for example. In example1-0.11, the function definition @test
(corresponding to the function definition test in example1-0.c) contains multiple basic blocks.
In the first basic block labeled iter.check, the code first checks if there is any aliasing between

https://llvm.org/docs/Vectorizers.html

Handout 6 — Homework 3: Vectorization

02
03

o1 void test(uint8_t * restrict a, uint8_t * restrict b) {

uint64_t i;

for (i = 0; i < SIZE; i++) {
ali] += b[il;
3

Figure 3: First modification to example1-0.c, which uses the restrict keyword. Code can be found in

examplel-1.c.

the arrays a and b. Aliasing means that the arrays overlap, such that some memory locations
accessed through a are also accessed through b. If there is aliasing, then a simple non-vectorized
loop is run which is the basic block for.body. If there is no aliasing, then a vectorized version of

the loop is run which is the basic block vector.body.

If you further investigate the assembly code generated in example1-0.s, you will find blocks that
correspond to the basic blocks in LLVM-IR; there will also be annotations with the LLVM-IR

basic blocks labels to help you identify them.

Write-up 1: Compare the LLVM IR output and the assembly output for example1-0.c:

1. Paste the lines of assembly code that correspond to the basic block iter.check in

LLVM-IR.

. If you investigate both the assembly and the LLVM-IR code that corresponds to the

aliasing check, you will find that they perform two comparisons. Why is that?

. The assembly code that performs the aliasing check does two comparisons and then a

conditional jump after each to the same label. What does this label correspond to: the
vectorized or non-vectorized version of the loop? Provide evidence by pasting the line
containing the conditional jump as well as some of the code getting executed at the
label that the jump corresponds to. Which instructions and registers used make you
think that this is the vectorized or non-vectorized version of the loop?

. Going back to the aliasing check in the assembly code, the code performs two

conditional jumps both to the same label corresponding to exactly one of the
vectorized or non-vectorized version of the loop. Why is there no need for logic to
branch to the other version?

Although this code is vectorized, multiversioning introduces additional overhead due to the
initial check for aliasing and the size of the code. In our case, we know that the arrays a and b

Handout 6 — Homework 3: Vectorization 5

o1 void test(uint8_t * restrict a, uint8_t * restrict b) {
02 uint64_t i;
03

__builtin_assume_aligned(a, 16);
__builtin_assume_aligned(b, 16);

4 a
05 b
06

07 for (i = 0; i < SIZE; i++) {
08 ali] += b[il;

09 }

10 }

Figure 4: Second modification to example1-0.c, to instruct clang to assume a particular alignment on
pointers. Code can be found in example1-2.c

never alias, meaning that these overheads are unnecessary. We can get clang to generate faster
vectorized code, without the overheads of multiversioning, by informing clang that a and b never
alias. To accomplish this, we can annotate the pointers using the restrict qualifier in standard
C, as shown in Figure 3.

Compile the code in Figure 3 with LLVMIR=1 to generate the LLVM IR in example1-1.11.

$ make LLVMIR=1 VECTORIZE=1 examplel-1.0

Notice that the function pointer arguments in the LLVM IR are marked with the noalias attribute,
reflecting the restrict qualifier added to the function arguments in the C code.

Compiling the code in Figure 3 with ASSEMBLE=1 should produce assembly code in examplel-1.s.

‘$ make ASSEMBLE=1 VECTORIZE=1 examplel-1.0

The generated code avoids the overheads of multiversioning, but it can still be improved. Some
processors can perform more efficient vector operations on aligned data, which is stored at mem-
ory addresses that are multiples of the vector width. In the example code, both the generated
LLVM IR and assembly indicate that the compiler does not assume that the data is aligned. In
the LLVM IR, the align attribute on the vector load and store instructions shows that clang only
assumes that the data are 1-byte aligned. Correspondingly, the assembly code uses the movdqu
instruction, which performs an unaligned move. There are various ways we can get clang to
generate more efficient vectorized code for aligned data. One way is to define a custom data type
with an attribute that conveys the data alignment of that type. Another is to use a specialized
memory-allocation routine, such as aligned_alloc in modern C, to ensure that dynamically allo-
cated memory is properly aligned. Third, clang supports the __builtin_assume_aligned intrinsic
that we can use to tell clang to assume that a given pointer has a specified alignment.

examplel-2.c is modified to use the __builtin_assume_aligned intrinsic as shown in Figure 4.
Recompile example1-2.c to produce LLVM IR output in example1-2.11.

Handout 6 — Homework 3: Vectorization 6

$ make LLVMIR=1 VECTORIZE=1 examplel-2.0

As the LLVM IR shows, the align attribute on the vector load and store operations matches the
specified alignment of 16 bytes.

Compiling the code in example1-2.c with ASSEMBLE=1 should produce assembly code in examplel1-2.s.

$ make ASSEMBLE=1 VECTORIZE=1 examplel-2.0

Write-up 2: The optimized assembly code in example1-2.s is shorter than the previous
version in example1-1.s. What changed? In other words, how else has clang optimized the
assembly code, thanks to the alignment information?

Now, finally, we get the nice and tight vectorized code (movdga is an aligned move) we were
looking for, because clang has used packed SSE instructions to add 16 bytes at a time. It also
manages to load and store two elements at a time, which it did not do before. The question is,
now that we understand what we need to tell the compiler, how much more complex can the
loop be before autovectorization fails.

The Makefile allows us to compile examplel-2.c with AVX2 instructions using the AVX2=1 flag.
Compile the assembly code for example1-2.c with AVX2 instructions using the following com-
mand:

$ make ASSEMBLE=1 VECTORIZE=1 AVX2=1 examplel-2.o0

You should see assembly output in example1-2.s. From that output, we can confirm that the loop
is vectorized using the vmov and vpadd AVX2 instructions and uses the 256-bit %ymm registers.

Write-up 3: The vectorized code uses unaligned move instructions. Modify example1-2.c to
make sure it uses aligned move instructions for the best performance, and paste the relevant
assembly code in your writeup. Commit and push your final implementation of
examplel-2.c.

2.2 Example 2

The next example illustrates how different implementations of a loop can lead to different vector-
izations. Consider the code in example2.c, which is reproduced in Figure 5. Examine the LLVM

Handout 6 — Homework 3: Vectorization 7

o1 void test(uint8_t * restrict a, uint8_t * restrict b) {
02 uint64_t i;

03

o4 uint8_t * x = __builtin_assume_aligned(a, 16);

05 uint8_t * y = __builtin_assume_aligned(b, 16);

06

07 for (i = 0; i < SIZE; i++) {

08 /* max() */

09 if (y[il > x[il) x[il = y[il;
10 }

1}

Figure 5: Original C code in example2-0.c.

o1 void test(uint8_t * restrict a, uint8_t * restrict b) {
02 uint64_t i;

04 uint8_t * x = __builtin_assume_aligned(a, 16);
05 uint8_t * y = __builtin_assume_aligned(b, 16);

o7 for (i = 0; i < SIZE; i++) {

08 /* max() */

09 x[i] = (y[il > x[il) ? y[il : x[il;
10 }

1}

Figure 6: Modified C code for example2-1.c.

IR and assembly that clang compiles for example2-0.c. You can use similar commands to those
described in Section 2.1:

$ make LLVMIR=1 VECTORIZE=1 example2-0.0
$ make ASSEMBLE=1 VECTORIZE=1 example2-0.0

Contrast the LLVM IR and assembly output from compiling example2-0.c to the output you
get from compiling example2-1.c as shown in Figure 6. You should find that, compared to the
original, the revised version in example2-1.c produces a tighter vectorized loop.

Write-up 4: Provide a theory for why the compiler generates dramatically different
assembly for these two different implementations.

Handout 6 — Homework 3: Vectorization 8

o1 void test(uint8_t * restrict a, uint8_t * restrict b) {
02 uint64_t i;

03

oa for (i
05 ali]

06 }

0; i < SIZE; i++) {
bli + 11;

Figure 7: Original C code in example3.c.

2.3 Example 3

Consider example3.c, whose code is reproduced in Figure 7. Generate either the LLVM IR or
assembly for example3.c, using make commands similar to those in Section 2.1.

Write-up 5: (Optional) Determine why clang does not generate vector instructions for this
code. Do you think it would be faster if it did vectorize? Explain.

3 Optimizing matrix multiplication using vectorization

We will now explore how to optimize dense square matrix multiplication using vectorization.
For this section, we will be working with the matrix-multiplication code in matmul.c within the
matmul/ subdirectory of the Git repository. This code implements a simple tiled algorithm for
square matrix multiplication, where the dimension n of the matrices is 1024. The matmul_base
routine matmul.c is called to process a single tile. We will investigate a couple aspects of how
clang can automatically vectorize this code. We will then use an extension supported by clang
to implement a more efficient vectorized base case ourselves.

3.1 Autovectorization of matrix multiplication

Let us first investigate how clang vectorizes the code matmul.c. Compile matmul.c using make
with AVX2:

$ make clean; make VECTORIZE=1 AVX2=1

You will see from the vectorization report that this matrix multiplication code — specifically, the
vectorization report indicates the loop in matmul_base — is not vectorized:

Handout 6 — Homework 3: Vectorization 9

matmul.c:45:7: remark: loop not vectorized [-Rpass-missed=loop-vectorizel]
for (int k = 0; k < size; ++k) {

A

In addition, you can examine the LLVM IR and assembly generated from compiling matmul.c
and verify that the compiled matmul_base function does not include vector instructions. You
can generate LLVM IR or assembly for matmul.c by passing the LLVMIR=1 and ASSEMBLE=1 flags,
respectively, to make. The vmulsd, vaddsd, and vfmadd231sd instructions operate on scalar double-
precision floating-point values.

The reason clang does not vectorize the given matmul.c code is in part because of floating-point
arithmetic and in part because of limitations in clang’s autovectorization capabilities. Floating-
point arithmetic is not associative, meaning that reordering floating-point operations can change
the value those operations produce. Some applications that use floating-point arithmetic are
sensitive to such changes. To support such applications, compilers are not allowed by default
to reorder floating-point computation. This restriction inhibits clang’s ability to find an efficient
vectorization of the program.

We have a couple of options for addressing this issue. First, because we do not mind slight
changes in the floating-point values computed when multiplying matrices, it would be acceptable
for us to pretend that floating-point arithmetic is associative. We can instruct clang to assume
that floating-point arithmetic is associative by passing the -ffast-math flag at compile time. The
Makefile allows us to pass the -ffast-math flag to clang at compile time by specifying the flag
EXTRA_CFLAGS="-ffast-math" as follows:

$ make clean; make VECTORIZE=1 AVX2=1 EXTRA_CFLAGS="-ffast-math"

Alternatively, we can reorder the loops in matmul_base to enable vectorization, even without
the -ffast-math flag. Hint: The LLVM IR and assembly output from compiling matmul.c is
substantially more complicated than what you have seen in previous examples. It can be hard,
therefore, to identify the LLVM IR or assembly code for the matrix-multiplication routine in
particular. One way to find the relevant LLVM IR or assembly output is to search the output file
for the two calls to the timing code, such as clock_gettime, because the matrix-multiplication
code of interest should appear between these calls. Another strategy is to use perf record and
perf report to help search for the matrix-multiplication code. Because a large fraction of the
running time of this program is spent in the matrix-multiplication code, this code should appear
near the top of perf’s profile. When using this second strategy, be careful not to confuse the
matrix-multiplication code you are optimizing with that used to check correctness.

Another good way to quickly view the assembly and LLVMIR of matmul_base is to use the
Compiler Explorer. To obtain the assembly for matmul_base, make sure to set the programming
language in the Compiler Explorer to C, and set the compiler to x86-64 clang 18.1.0. Then, in
the “Compiler options...” field, paste the compiler flags that get passed to clang-spe when you
compile matmul locally. make will print out the clang command that it runs, so you can get
the flags from there. Now, paste the matmul_base function along with associated code like the

https://godbolt.org/
https://godbolt.org/

Handout 6 — Homework 3: Vectorization 10

typedef double el_t above matmul_base. You will see the assembly for the code, which should
automatically update as you type. You can also see how the lines correspond to the assembly
through color-coding. To see LLVM IR, you can click the “Add new...” dropdown above the
assembly output and select “LLVM IR”. By using the Compiler Explorer, you will be able to
iterate on the code much faster, but as a disclaimer, the assembly output may not exactly match
the clang-spe output, so when citing assembly code in your response to write-ups, you should
always use locally generated assembly with the ASSEMBLY=1 flag.

Write-up 6: Compile the original matmul code and run it using telerun to measure its
original running time. Then, recompile the code using -ffast-math, and examine the output
of the vectorization report. Does the matmul code vectorize? Why or why not? Run the
recompiled code with telerun, and discuss how the running time has changed. Note that
the vectorization report might contain a second entry for the loop in matmul_base if clang
inlines the matmul_base function into its caller function, main.

Write-up 7: You can mandate that clang vectorize a particular loop using a pragma
directive. For example, to require clang to vectorize the k loop in matmul_base, you can add
the following pragma before the loop:

‘#pragma clang loop vectorize(enable) interleave(enable) ‘

Recompile your code by running

\$ make clean; make VECTORIZE=1 AVX2=1 ‘

Verity that the vectorization report confirms that clang now vectorizes the loop. Run the
resulting executable with telerun. Discuss how the performance of the program with the
pragma compares to that of the original code without any optimizations and the code
compiled with -ffast-math. Propose an explanation for the new performance you observed
by examining the LLVM IR or assembly output for this version of matmul.

Write-up 8: (Optional) Remove the pragma added by the previous write-up, and now try to
enable vectorization by reordering the loops in matmul_base. Which loop does clang now
report as the vectorized loop? You should find an order of loops that allows clang to

Handout 6 — Homework 3: Vectorization 11

vectorize (without -ffast-math). What's the running time of this vectorized code, as
measured with telerun? How does it compare to your previous vectorized codes? Explain
your numbers by investigating the LLVM-IR or assembly and see how the generated vector
code now compare to the generated vector code from before.

3.2 Data types and vectorization

In some situations, one can use lower-precision floating-point arithmetic and still produce ac-
ceptable results. Such an optimization can improve performance, not only by reducing the space
required, but also by enabling vectorization to operate on more elements of input at a time.

Write-up 9: Change the element type of the matrices from double to float. You can make
this change by changing the typedef statement that defines the el_t type, which is the type
of the matrices used in this matrix-multiplication code. How does this change affect the
vectorization of the code? What’s the running time of the new code, as measured with
telerun?

3.3 Further optimization by reordering operations

We can compute matrix multiplication with a different ordering of operations that allows us to
vectorize more intelligently than clang does. To do this, you will need to use compiler builtins
and manually vectorize the matrix multiplication code.

But first, let us discuss how reordering operations can improve performance. When computing
C = A - B, our program currently iterates over each cell of C, computing them by looking up
values in the corresponding row of A and the corresponding column of B. So, to calculate the
tirst element of the first row of C (which we will call C;; from here on), we need to multiply the
tirst row of A with the first column of B and add all of the resulting values.

However, when we go to calculate the second element of the first row of C (which we will call C; »
from here on), we will again need to load the first row of A, though we will now be multiplying
it with the second column of B. This raises the question: could we avoid loading the first row of
A repeatedly as we calculate the first row of C?

As it turns out, it is possible with vectorization if we are willing to reorder our operations slightly.

Handout 6 — Homework 3: Vectorization 12
Let’s formally write the formula for C; 1 and Cy »:
n
Cip = Z A1 Big
i=1
n
Cio=) Ay B
i=1

Note that both B,,; and B,,» are multiplied by A;,. So, to avoid loading A, on two separate
instances, what if we grouped B, ; and B, into a single vector and multiplied them in a single
vector operation? Then, our computation will look like:

n
[Cip Cip] = ZAl,n - [Bu1 Bup)
i—1

We can fit more than 2 floats in a single vector register. In fact, we can fit 8 floats. So, even more
efficiently, we can compute 8 entries of C at a time:

n
[Cip Cip ... Cug) :ZAl,n'[Bn,l Bup ... Bug)
i—1

This is a decent amount of vectorization, but we can still do better. To see how, let’s look at the
formula for the second row of C:

n
[Co1 Cop ... Cogl =D Asu-[Buy Buz ... Bug]
i=1
Notice how this computation uses the same set of vectors [Bn,1 Buo ... Bn,g] as the first row!
Thus, it might be a good idea to reuse [BM Bup ... Bnlg] when adding into the second row

after we already used it in the first row. The main problem with this approach is that, if we try to
compute too many rows of C at once, we will eventually run out of vector registers to store C in.
Once the compiler runs out of registers to store C in, it will try to use the stack instead, which is
slow.

These observations alone should allow you to substantially optimize matmul, but the implemen-
tation may be trickier than you think. The next section will talk about how we can manually
implement our optimization strategy.

The GCC vector extension

The compiler’s autovectorization capabilities struggle to figure out the optimizations we just
discussed, so we're going to implement it ourselves.

To simplify the task of implementing hand-vectorized code, clang supports the GCC vector
extension to C. This vector extension provides an attribute for defining a vector type, as follows:

Handout 6 — Homework 3: Vectorization 13

typedef float vfloat_t __attribute__((__vector_size__(64)));

This type definition defines a new type, vfloat_t, which is a vector of float’s whose total size,
indicated by the argument to the __vector_size__ attribute, is 64 bytes. With this definition of
a vector type, one can write C code that defines vector variables using standard C syntax. For
example, the following code uses the above type definition to declare the variable b_vec as a
vector of float’s and the variables a_vec and c_vec as arrays of 2 vfloat_t’s each:

vfloat_t b_vec;
vfloat_t a_vec[2], c_vec[2];

One can express elementwise vector operations using C’s primitive operations — such as +,
-, *, and so on — on variables of a vector type. The following code, for example, computes
the elementwise product between a_vec[0] and b_vec and adds that product elementwise into
c_vec[0]:

c_vec[0] += a_vec[0] * b_vec;

Individual elements of a vector-type variable can be accessed using standard C notation for
indexing arrays. For example, the following code initializes the entries in b_vec with consecutive
elements in an array B, starting at index i:

for (int e
b_vec[e]

0; e < sizeof(vfloat_t)/sizeof(float); ++e)
B[i + el;

From examining the LLVM IR or assembly for this code, you should find that clang compiles
and optimizes this loop into a vector load from the address &[i]. Similarly, you can broadcast
the value of the i-th entry of an array A to each element in a_vec[0] as follows:

for (int e = 0; e < sizeof(vfloat_t)/sizeof(float); ++e)
a_vec[0]1[e] = A[il;

You should find that clang compiles and optimizes this loop over the vector elements to replace it
with a single vector broadcast instruction in assembly, such as broadcast or vbroadcast. You can
find further documentation about the GCC vector extension at the following webpage: https:
//gcc.gnu.org/onlinedocs/gcc/Vector-Extensions. html.!

We can use the GCC vector extension to implement the outer-product base case by hand. Through
careful coding, we can produce a matrix multiplication code with a highly efficient base case that

You can also find documentation on the GCC vector extension here: https://releases.1llvm.org/9.0.0/tools/
clang/docs/LanguageExtensions.html#vectors-and-extended-vectors. This page includes particulars of clang’s sup-
port for the GCC vector extension, but mixes in discussion of other vector extensions, including the OpenCL, AltiVec,
and NEON vector extensions, which can be confusing. For this exercise, the documentation in this handout and on
the GCC webpage should suffice.

https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://releases.llvm.org/9.0.0/tools/clang/docs/LanguageExtensions.html#vectors-and-extended-vectors
https://releases.llvm.org/9.0.0/tools/clang/docs/LanguageExtensions.html#vectors-and-extended-vectors

Handout 6 — Homework 3: Vectorization 14

outperforms what clang’s autovectorization can produce. Indeed, with a simple implementation
of the methods we have discussed, one may expect a running time of approximately 0.13 seconds,
as measured via telerun. Another more optimized version achieves approximately 0.025 seconds,
as measured via telerun.

Now, it’s your turn. You will be optimizing matmul using the techniques described above. When
optimizing, remember to examine the LLVM IR and assembly (perhaps through the Compiler
Explorer) to verify that clang is producing the vectorized instructions that you expect. Run the
compiled matmul executable and allow it to check that the optimized code correctly multiplies
matrices.

Write-up 10: Manually vectorize matmul as discussed above by modifying the matmul_base
function in matmul.c. For bonus points, try to optimize your implementation of the base
case to beat the performance of clang’s autovectorization. (But don’t invest too much time
into this write-up, at the expense of your project!) How did you make the most use out of
all of the vector registers? How did you modify the loops in matmul_base to execute your
base case efficiently? How did the performance of your final implementation compare to
that of clang’s autovectorization? Commit and push your final optimized implementation of
matmul.c.

4 Turn-in

When you've written up answers to all of the above questions, turn in your write-up by uploading
it to Gradescope, and commit and push your code to your Git repository.

https://godbolt.org/
https://godbolt.org/

	Getting started
	Vectorization in |clang|
	Example 1
	Example 2
	Example 3

	Optimizing matrix multiplication using vectorization
	Autovectorization of matrix multiplication
	Data types and vectorization
	Further optimization by reordering operations

	Turn-in

