
Software Performance Engineering January 14, 2025
Michigan State University CSE 491
Xuhao Chen Handout 3

Homework 1: Getting Started

Due: 10:00 p.m. (et) on Friday, January 21, 2025

Last Updated: January 14, 2025

This homework introduces the environment and tools you will be using to complete your future project
assignments. It includes a quick C primer. You should use this assignment to familiarize yourself with the
tools you will be using throughout the course.

Contents

1 Immediate action items . 1
2 Software engineering . 1
3 Virtual machine setup . 2
4 Version control . 2
5 Visual Studio Code . 3
6 C primer . 4
7 Basic tools . 9
8 Using telerun . 10
9 C style guidelines . 17
10 Practice with Instrumentation (Useful for Project 1) . 17
11 Submission . 19

1 Immediate action items

Make sure to complete homework 0 before starting this homework.

2 Software engineering

Best practices

A good software engineer strives to write programs that are fast, correct, and maintainable. Here
are a few best practices which we feel are worth reminding you of:

• Maintainability: Comment your code, use meaningful variable names, insert whitespaces,
and follow a consistent style.

Handout 3 — Homework 1: Getting Started 2

• Code organization: Break up large functions into smaller subroutines, write reusable helper
functions, and avoid duplicating code.

• Version control: Write descriptive commit messages, and commit your changes frequently
(but don’t commit anything that doesn’t compile).

• Assertions: Frequently make assertions within your code so that you know quickly when
something goes wrong.

Pair programming

Pair programming is a technique in which two programmers work on the same machine. Ac-
cording to Laurie Williams from North Carolina State University: “One of the programmers,
the driver, has control of the keyboard/mouse and actively implements the program. The other
programmer, the observer, continuously observes the work of the driver to identify tactical (syn-
tactic, spelling, etc.) defects, and also thinks strategically about the direction of the work.” The
programmers work equally to develop a piece of software as they periodically switch roles.

3 Virtual machine setup

Follow the instructions in the following link to set up your course development environment:
https://github.com/CSE491-spring25/student_software.

If you have trouble with any of these steps, please double-check to ensure you have followed the
sequence of instructions precisely, and then ask a TA and/or post a Piazza note to the instructors.

4 Version control

We will use the Git distributed version control system for code release and submission. We will
be using github.com for this class. The baseline code for this assignment is in the repository
https://github.com/CSE491-spring25/homework1.

Cloning Homework 1

To make a clone—a local copy of the repository for your work—type:

$ git clone git@github.com:CSE491-spring25/homework1_<your-netid>.git homework1

Note that this clones your particular repository, and renames it to homework1.

You should frequently commit and push your changes back to the repository:

https://github.com/CSE491-spring25/student_software
github.com
https://github.com/CSE491-spring25/homework1

Handout 3 — Homework 1: Getting Started 3

$ git commit -am ’Your commit message’
$ git push

For more advanced usage of Git, please refer to your favorite search engine.

5 Visual Studio Code

We recommend using Visual Studio Code as your primary editor for code in your VM, either
through the Remote-SSH extension or through the shared filesystem via Orbstack. In section 3,
you configured Visual Studio Code as the editor for your SPE Virtual Machine. The setup script
included some recommended extensions that will be helpful for the class, such as syntax high-
lighting for C and a GUI for Git. You may install any extensions that you find useful through the
VS Code Marketplace, such as syntax highlighting for C, a GUI for Git, or key bindings for Vim
or Emacs.

Checkoff: Show the TA that you are able to view the Homework 1 code both in the browser
(on Github) and in VS Code.

Handout 3 — Homework 1: Getting Started 4

6 C primer

This section provides a short introduction to the C programming language. The code used in the
exercises is located in homework1/c-primer in your repository.

Why use C?

• Simple: No complicated object-oriented abstractions like Java/C++.

• Powerful: Offers direct access to memory (but does not offer protection in accessing mem-
ory).

• Fast: No overhead of a runtime or JIT compiler, and no behind-the-scenes runtime features
(like garbage collection) that use machine resources.

• Ubiquitous: C is the most popular language for low-level and performance-intensive soft-
ware like device drivers, operating-system kernels, and microcontrollers.

Preprocessing

The C preprocessor modifies source code before it is passed to the compilation phase. Specifically,
it performs string substitution of #define macros, conditionally omits sections of code, processes
#include directives to import entire files’ worth of code, and strips comments from code.

As an example, consider the code in preprocess.c, which is replicated in Figure 1.

Exercise: Direct clang to preprocess preprocess.c.

$ clang-spe -E preprocess.c

The preprocessed code will be output to the console. Now, rerun the C preprocessor with the
following command:

$ clang-spe -E -DNDEBUG preprocess.c

You will notice that the if statement won’t appear in the preprocessor output.

Data types and their sizes

C supports a variety of primitive types, including the types listed in Figure 2.

Note: On most 64-bit machines and compilers, a standard-precision value (e.g. int, float) is 32
bits. A short is usually 16 bits, and a long or a double is usually 64. The precisions of these types
are weakly defined by the C standard, however, and may vary across compilers and machines.

Handout 3 — Homework 1: Getting Started 5

01 // All occurrences of ONE will be replaced by 1.
02 #define ONE 1
03

04 // Macros can also behave similar to inline functions.
05 // Note that parentheses around parameters are required to preserve order of
06 // operations. Otherwise, you can introduce bugs when substitution happens.
07 #define MIN(a,b) ((a) < (b) ? (a) : (b))
08

09 int c = ONE, d = ONE + 5;
10 int e = MIN(c, d);
11

12 #ifndef NDEBUG
13 // This code will be compiled only when
14 // the macro NDEBUG is not defined.
15 // Recall that if clang is passed -DNDEBUG on the command line,
16 // then NDEBUG will be defined.
17 if (something) {}
18 #endif

Figure 1: A sample C program. If -DNDEBUG is not on, the preprocessor will include the if statement
in line 17.

01 short s; // short signed integer
02 unsigned int i; // standard-length unsigned integer
03 long l; // long signed integer
04 long long l; // extra-long signed integer
05 char c; // represents 1 ASCII character (1 byte)
06 float f; // standard-precision floating point number
07 double d; // double-precision floating point number

Figure 2: Some of the primitive types in C.

Confusingly, sometimes int and long are the same precision, and sometimes long and long long

are the same, both longer than int. Sometimes, int, long, and long long all mean the exact same
thing!

For throwaway variables or variables which will stay well under precision limits, use a regular
int. The precisions of these values are set in order to maximize performance on machines with
different word sizes. If you are working with bit-level manipulation, it is better to use unsigned
data types such as uint64_t (unsigned 64-bit int). Otherwise, it is often better to use a non-
explicit variable such as a regular int.

Furthermore, if you know the architecture you’re working with, it is often better to write code
with explicit data types instead (such as the ones in Figure 3).

You can define more complex data types by composing primitive types into a struct. For exam-

Handout 3 — Homework 1: Getting Started 6

01 #include <stdint.h>
02

03 uint64_t unsigned_64_bit_int;
04 int16_t signed_16_bit_int;

Figure 3: Examples of explicit types in C.

ple, one example of a struct definition in C is provided in Figure 4.

01 typedef struct {
02 int id;
03 int year;
04 } student;
05

06 student you;
07 // access values on a struct with .
08 you.id = 12345;
09 you.year = 3;

Figure 4: Examples of a struct declaration in C.

Exercise: Edit sizes.c to print the sizes of each of the following types: int, short, long, char,
float, double, unsigned int, long long, uint8_t, uint16_t, uint32_t, uint64_t, uint_fast8_t,
uint_fast16_t, uintmax_t, intmax_t, __int128, int[] and student. Note that __int128 is a clang
C extension, and not part of standard C. To check the size of an int array, print the size of the
array x declared in the provided code.

To compile and run this code, use the following command:

$ make sizes && ./sizes

To avoid creating repetitive code, you may find it useful to define a macro and call it for each of
the types.

If you are interested in learning more about built-in types, check out
http://en.cppreference.com/w/c/types/integer .

Pointers

Pointers are first-class data types that store addresses in memory. A pointer can store the address
of anything in memory, including another pointer. In other words, it is possible to have a pointer
to a pointer.

https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions
http://en.cppreference.com/w/c/types/integer

Handout 3 — Homework 1: Getting Started 7

Arrays behave very similarly to pointers: both hold information about the type and location of
values in memory. There are a few gotchas involved with treating pointers and arrays equiva-
lently, however.1 Consider the following (buggy) snippet of code from pointer.c in Figure 5.

Exercise: Compile pointer.c using the following command:

$ make pointer

You will see compilation errors corresponding to the invalid statements mentioned in the above
program. Why are these statements invalid? Comment out those invalid statements and recom-
pile the program. (Do not worry if you see additional warnings about unused variables.)

Write-up 1: Answer the questions in the comments in pointer.c. For example, why are
some of the statements valid and some are not?

Write-up 2: For each of the types in the sizes.c exercise above, print the size of a pointer to
that type. Recall that obtaining the address of an array or struct requires the & operator.
Provide the output of your program (which should include the sizes of both the actual type
and a pointer to it) in the write-up.

Argument passing

In C, arguments2 to a function are passed by value. That means that if you pass an integer to
function foo(int f), a new variable f will be initialized inside foo with the same value as the
integer you passed in.

For instance, consider the code in Figure 6 that swaps two integers. Why doesn’t it work as
expected?

There are two ways to fix this code. One way is to change swap() to be a macro, causing the
operations to be evaluated in the scope of the macro invocation. Another way is to change
swap() to use pointers. We will now ask you to fix the code by using pointers.

1For further reading, try the challenge at https://blogs.oracle.com/linux/the-ksplice-pointer-challenge-v2
after class.

2In general, parameters are the variables that appear in a function definition, and arguments are the data that are
actually passed in at runtime.

https://blogs.oracle.com/linux/the-ksplice-pointer-challenge-v2

Handout 3 — Homework 1: Getting Started 8

01 int main(int argc, char* argv[]) { // What is the type of argv?
02 int i = 5;
03 // The & operator here gets the address of i and stores it into pi
04 int* pi = &i;
05 // The * operator here dereferences pi and stores the value -- 5 --
06 // into j.
07 int j = *pi;
08

09 char c[] = "6.106";
10 char* pc = c; // Valid assignment: c acts like a pointer to c[0] here.
11 char d = *pc;
12 printf("char d = %c\n", d); // What does this print?
13

14 // compound types are read right to left in C.
15 // pcp is a pointer to a pointer to a char, meaning that
16 // pcp stores the address of a char pointer.
17 char** pcp;
18 pcp = argv; // Why is this assignment valid?
19

20 const char* pcc = c; // pcc is a pointer to char constant
21 char const* pcc2 = c; // What is the type of pcc2?
22

23 // For each of the following, why is the assignment:
24 *pcc = ’7’; // invalid?
25 pcc = *pcp; // valid?
26 pcc = argv[0]; // valid?
27

28 char* const cp = c; // cp is a const pointer to char
29 // For each of the following, why is the assignment:
30 cp = *pcp; // invalid?
31 cp = *argv; // invalid?
32 *cp = ’!’; // valid?
33

34 const char* const cpc = c; // cpc is a const pointer to char const
35 // For each of the following, why is the assignment:
36 cpc = *pcp; // invalid?
37 cpc = argv[0]; // invalid?
38 *cpc = ’@’; // invalid?
39

40 return 0;
41 }

Figure 5: An example of valid and invalid pointer usage in C.

Handout 3 — Homework 1: Getting Started 9

01 void swap(int i, int j) {
02 int temp = i;
03 i = j;
04 j = temp;
05 }
06

07 int main() {
08 int k = 1;
09 int m = 2;
10 swap(k, m);
11 // What does this print?
12 printf("k = %d, m = %d\n", k, m);
13 }

Figure 6: An incorrect implementation of swap() in C.

Write-up 3: File swap.c contains the code to swap two integers. Rewrite the swap() function
using pointers and make appropriate changes in main() function so that the values are
swapped with a call to swap(). Compile the code with make swap and run the program with
./swap. Provide your edited code in the write-up. Verify that the results of both sizes.c and
swap.c are correct by using the python script verifier.py.

7 Basic tools

The code that we will be using in this section is located in homework1/matrix-multiply.

Building and running your code

You can build the code by going to the homework1/matrix-multiply directory and typing make.
The program will compile using Tapir, a cutting-edge derivative of Clang/LLVM. Notice that we
are only compiling with optimization level 1 (i.e., -O1).

Exercise: Modify your Makefile so that the program is compiled using optimization level 3 (i.e.,
-O3).

Write-up 4: Now, what do you see when you type make clean; make?

Handout 3 — Homework 1: Getting Started 10

You can then run the built binary by typing ./matrix_multiply. The program should print out
something and then crash with a segmentation fault.

If a different error occurs, you may be compiling the file for an architecture incompatible with
the one you are executing it on. Recompile the program with make clean; make LOCAL=1.

8 Using telerun

Directly running and timing the execution on your own VMs may give inaccurate results; you
may be running a small VM, there might be architectural differences, and there might also be
measurement errors due to interference with your editor or other programs you are running. To
get a standardized environment and an accurate timing measure on a dedicated machine, you
can use the telerun utility.

After compiling your code with make, you can run

$ telerun <your_program>

and your job will be queued. The command will not return until the job has been completed and
you get results unless you control-C (canceling the process). The output of the program is then
shown.

Using a debugger

While running your program, if you encounter a segmentation fault, bus error, or assertion
failure, or if you just want to set a breakpoint, you can use the debugging tool GDB.

Exercise: Obtain a program stack trace using GDB.

We will run GDB using telerun, as the virtualization software can cause problems with GDB
on certain base operating systems. First, rebuild the program for the remote machine with
make clean; make (no local flag).

$ telerun gdb -ex run -ex bt -batch ./matrix_multiply

This command should run the program until it crashes, then output the program stack trace.

You should get an output like this:

Program received signal SIGSEGV, Segmentation fault.
0x000000000022a784 in matrix_multiply_run ()
#0 0x000000000022a784 in matrix_multiply_run ()
#1 0x000000000022a4ee in main ()

Handout 3 — Homework 1: Getting Started 11

This stack trace says that the program crashes in matrix_multiply_run, but it doesn’t give any
other information about the error. In order to get more information, we will build a “debug”
version of the code. Run:

$ make clean
$ make DEBUG=1
$ telerun gdb -ex run -ex bt -batch ./matrix_multiply

The major differences from the optimized build are ‘-gdwarf-2’ (add debug symbols to your
program) and ‘-O0’ (compile without any optimizations). The stack trace should now include
file line numbers. GDB tells us that a segmentation fault occurs at at matrix_multiply.c line 90.
dimensions.

Using assertions

The tbassert package is a useful tool for catching bugs before your program goes off into the
weeds. If you look at matrix_multiply.c, you should see some assertions in matrix_multiply_run

routine that check that the matrices have compatible dimensions.

Exercise: Uncomment these lines and add a line to include tbassert.h at the top of the file.
Then, build and generate a new GDB stack trace. Make sure that you build using make DEBUG=1.
You should see the following:

Running matrix_multiply_run()...
matrix_multiply.c:80 (int matrix_multiply_run(const matrix *, const matrix *, matrix *))
Assertion A->cols == B->rows failed: A->cols = 5, B->rows = 4

Program received signal SIGABRT, Aborted.
__pthread_kill_implementation (no_tid=0, signo=6, threadid=140737351526208) at
./nptl/pthread_kill.c:44
44 ./nptl/pthread_kill.c: No such file or directory.
#0 __pthread_kill_implementation (no_tid=0, signo=6, threadid=140737351526208) at
./nptl/pthread_kill.c:44
#1 __pthread_kill_internal (signo=6, threadid=140737351526208) at
./nptl/pthread_kill.c:78
#2 __GI___pthread_kill (threadid=140737351526208, signo=signo@entry=6) at
./nptl/pthread_kill.c:89
#3 0x00007ffff7dc7476 in __GI_raise (sig=sig@entry=6) at ../sysdeps/posix/raise.c:26
#4 0x00007ffff7dad7f3 in __GI_abort () at ./stdlib/abort.c:79
#5 0x00005555555565fc in matrix_multiply_run (A=0x555555559360, B=0x5555555592c0,
C=0x555555559460) at matrix_multiply.c:79
#6 0x0000555555556227 in main (argc=1, argv=0x7fffffffe3f8) at testbed.c:134

GDB tells us that “Assertion ‘A->cols == B->rows’ failed”, which is much better than the
former segmentation fault. The assertion provides a printf-like API that allows you to print
values in your own output, as above.

Handout 3 — Homework 1: Getting Started 12

You will also see an assertion failure with a line number for the failing assertion without using
GDB. Since the extra checks performed by assertions can be expensive, they are disabled for
optimized builds, which are the default in the Makefile. As a result, if you make the program
without DEBUG=1, you will not see an assertion failure.

You should sprinkle assertions liberally throughout your code to check important invariants in
your program because they will make your life easier when debugging. In particular, most non-
trivial loops and recursive functions should have an assertion of the loop or recursion invariant.

Exercise: Fix testbed.c, which creates the matrices, rebuild your program, and verify that it now
works. You should see “Elapsed execution time...” after executing the following command:

$ telerun ./matrix_multiply

Commit and push your changes to the Git repository:

$ git commit -am ’Your commit message’
$ git push origin main

Next, check the result of the multiplication. Run the following command:

$ telerun ./matrix_multiply -p

The program will print out the result. The result seems to be wrong, however. You can check the
multiplication of zero matrices by running

$ telerun ./matrix_multiply -pz

Using a memory checker

Some memory bugs do not crash the program, and consequently, GDB cannot tell you where
the bug is. You can use the memory checking tools AddressSanitizer and Valgrind to track these
bugs.

AddressSanitizer

Clang’s built-in AddressSanitizer is a quick memory error checker that uses compiler instrumen-
tation and a run-time library. It can detect a wide variety of bugs (including memory leaks). To
use AddressSanitizer, we need to pass the appropriate flags. First, do

$ make clean

to get rid of the existing build. Next, do

Handout 3 — Homework 1: Getting Started 13

$ make ASAN=1

to build with AddressSanitizer’s instrumentation, yielding the following (you may also get a
warning by the gold linker, ld.gold):

01 $ make ASAN=1
02 clang -O1 -g -fsanitize=address -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c \
03 testbed.c -o testbed.o
04 clang -O1 -g -fsanitize=address -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c \
05 matrix_multiply.c -o matrix_multiply.o
06 clang -o matrix_multiply testbed.o matrix_multiply.o -lrt -flto -fuse-ld=gold \
07 -fsanitize=address

Finally, run the program with

$ telerun ./matrix_multiply

Write-up 5: What output do you see from AddressSanitizer regarding the memory bug?
Paste it into your write-up here.

Valgrind

Valgrind is another tool for checking memory leaks. If you want to check a program without
recompiling with instrumentation, Valgrind is a good option for detecting memory bugs.

Exercise: First, do

$ make clean && make DEBUG=1

to get rid of the existing build and get a fresh build. Run Valgrind using

$ telerun valgrind ./matrix_multiply -p

You need the -p switch, since Valgrind only detects memory bugs that affect outputs. You should
also use a “debug” version to get a good result. This command should print out many lines. The
important ones are

Handout 3 — Homework 1: Getting Started 14

==1027219== Use of uninitialised value of size 8
==1027219== at 0x48C22EB: _itoa_word (_itoa.c:177)
==1027219== by 0x48DDABD: __vfprintf_internal (vfprintf-internal.c:1516)
==1027219== by 0x48C879E: printf (printf.c:33)
==1027219== by 0x10A3BB: print_matrix (matrix_multiply.c:68)
==1027219== by 0x10A0E5: main (testbed.c:140)

This output indicates that the program used a value before initializing it. The stack trace indicates
that the bug occurs in testbed.c:140, which is where the program prints out matrix C.

Exercise: Fix matrix_multiply.c to initialize values in matrices before using them. Keep in mind
that the matrices are stored in struct’s. Rebuild your program, and verify that it outputs a
correct answer. Again, commit and push your changes to the Git repository.

Write-up 6: After you fix your program, run telerun ./matrix_multiply -p. Paste the
program output showing that the matrix multiplication is working correctly.

Memory management

The C programming language requires you to free memory after you are done using it, or else
you will have a memory leak. Valgrind can track memory leaks in the program. Run the same
Valgrind command, and you will see these lines towards the end of its output:

==1027765== LEAK SUMMARY:
==1027765== definitely lost: 48 bytes in 3 blocks
==1027765== indirectly lost: 288 bytes in 15 blocks
==1027765== possibly lost: 0 bytes in 0 blocks
==1027765== still reachable: 0 bytes in 0 blocks
==1027765== suppressed: 0 bytes in 0 blocks
==1027765== Rerun with --leak-check=full to see details of leaked memory

This output suggests that there are indeed memory leaks in the program. To get more infor-
mation, you can build your program in debug mode and again run Valgrind, using the flag
--leak-check=full

$ telerun valgrind --leak-check=full ./matrix_multiply -p

The trace shows that all leaks are from the creations of matrices A, B, and C.

Exercise: Fix testbed.c by freeing these matrices after use with the function free_matrix. Re-
build your program, and verify that Valgrind doesn’t complain about anything. Commit and
push your changes to the Git repository.

Handout 3 — Homework 1: Getting Started 15

Write-up 7: Paste the output from Valgrind showing that there is no error in your program.

Checking code coverage

Bugs may exist in code that doesn’t get executed in your tests. You may find it surprising when
someone testing your code (like a professor or a TA) uncovers a crash on a line that you never
exercised. Additionally, lines that are frequently executed are good candidates for optimization.
The Gcov tool provides a line-by-line execution count for your program.

Exercise: To use Gcov, modify your Makefile and add the flags -fprofile-arcs and -ftest-coverage

to the CFLAGS and LDFLAGS variables. You will have to rebuild from scratch using make clean fol-
lowed by make DEBUG=1 LOCAL=1. Try running your code normally with ./matrix_multiply -p.
Observe that several new .gcda and .gcno files were created during your execution.

Now use the llvm-cov command-line utility on testbed.c:

$ llvm-cov gcov testbed.c

A new file, testbed.c.gcov was created that is identical to the original testbed.c, except that it
has the number of times each line was executed in the code. In that file, you will see:

1: 99: if (use_zero_matrix) {

#####: 100: for (int i = 0; i < A->rows; i++) {

#####: 101: for (int j = 0; j < A->cols; j++) {

#####: 102: A->values[i][j] = 0;

#####: 103: }

#####: 104: }

#####: 105: for (int i = 0; i < B->rows; i++) {

#####: 106: for (int j = 0; j < B->cols; j++) {

#####: 107: B->values[i][j] = 0;

#####: 108: }

#####: 109: }

#####: 110: } else {

The hash marks indicate lines that were never executed. In general, it is unusual to run a code-
coverage utility on a testbed, but a set of untested lines in your core code could lead to unexpected
results when executed by someone else.

Handout 3 — Homework 1: Getting Started 16

Another handy use of Gcov is identifying which lines got executed the most frequently. Code
that gets run the most is often the most costly in terms of performance. Run llvm-cov on
matrix_multiply.c and look at the output:

5: 91: for (int i = 0; i < A->rows; i++) {

20: 92: for (int j = 0; j < B->cols; j++) {

80: 93: for (int k = 0; k < A->cols; k++) {

64: 94: C->values[i][j] += A->values[i][k] * B->values[k][j];

64: 95: }

16: 96: }

4: 97: }

These are the loops in matrix_multiply_run. Clearly, this function is a good candidate for opti-
mization.

When you are done using Gcov, remove the flags you added to the Makefile because they add
costly overhead to the execution, and will negatively impact your actual performance numbers.
You should never run benchmarks on code that is instrumented with Gcov. Don’t forget to
make clean to remove the instrumented object files.

Performance enhancements

To get an idea of the extent to which performance optimizations can affect the performance of
your program, we will first increase the size of the input to demonstrate the effects of changes in
the code.

Exercise: Increase the size of all matrices to 1000 × 1000.

Now let’s try one of the techniques from the Lecture 1. Right now, the inner loop produces a
sequential access pattern on A and skips through memory on B. Let’s rearrange the loops to
produce a better access pattern.

Exercise: First, you should run the program as is to get a performance measurement. Next, swap
the j and k loops, so that the inner loop strides sequentially through the rows of the C and B

matrices. Rerun the program, and verify that you have produced a speedup. Commit and push
your changes to the Git repository.

Write-up 8: Report the execution time of your programs before and after the optimization.

Handout 3 — Homework 1: Getting Started 17

Compiler optimizations

To get an idea of the extent to which compiler optimizations can affect the performance of your
program, rebuild your program in “debug” mode and run it with telerun.

Exercise: Rebuild it again with optimizations (just type make), and run it with telerun. Both
versions should print timing information, and you should verify that the optimized version is
faster.

Write-up 9: Report the execution time of your programs compiled in debug mode with -O0

and normally with -O3.

9 C style guidelines

Code that adheres to a consistent style is easier to read and debug. Google provides a style guide
for C++ which you may find useful: https://google.github.io/styleguide/cppguide.html

We have provided a Python script clint.py, which is designed to check a subset of Google’s style
guidelines for C code. To run this script on all source files in a given directory, use the following
command:

$ python clint.py path-to-directory/*

The code the staff provides contains no style errors. We suggest, but do not require, that you
use this tool to clean up your source code. Part of your code-quality grade on projects is based
on the readability of your code. It can be difficult to maintain a consistent style when multiple
people are working on the same codebase. For this reason, you may find it useful to use the style
checkers provided by the course staff during your group projects to keep your code readable.

10 Practice with Instrumentation (Useful for Project 1)

We have earlier used the AddressSanitizer in section 7 to help us debug problems related to
memory. We did this by passing the instrumentation option -fsanitize=address to clang-spe,
so that it would add extra instructions to detect for these memory bugs.

Exercise: Investigate the Makefile in matrix-multiply to see how the instrumentation option is
used.

There are other Sanitization instrumentation options that are useful. One such example is the
Undefined Behavior Sanitizer. It can be used by passing the option -fsanitize=undefined to

https://google.github.io/styleguide/cppguide.html

Handout 3 — Homework 1: Getting Started 18

clang-spe. It checks for some undefined operations like division by zero, incorrect shift opera-
tions, integer overflow errors, ...

To get some practice using it, navigate to the homework1/is-power-of-two directory.

This directory contains a small program that check if a number is a power of two in
is-power-of-two/is_power_of_two.c and a number of test cases to check if for correctness in
is-power-of-two/testbed.c

Compile and run the test cases using:

$ make LOCAL=1
$./is_power_of_two

You will notice that the program never finishes executing.

Now, this is a good time to try to use the Undefined Behavior Sanitizer. We have added a rule
to the Makefile that should run this sanitizer (make UBSAN=1), but we left out the instrumentation
for you to get some practice.

Exercise: Investigate the Makefile in is-power-of-2 to see how the rule ASAN uses the Address
Sanitizer -fsanitize=address. Then, modify the Makefile to get the rule UBSAN to pass the option
-fsanitize=undefined where appropriate.

Write-up 10: What do you see when you run make clean; make LOCAL=1 UBSAN=1? Paste the
compilation output.

Write-up 11: What do you see when you run ./is_power_of_two? Paste the error that the
sanitizer throws. Explain where and why this error happened. Then, fix the bug you found
and explain your fix. Finally, paste the fixed code.

Your program should not get stuck again once you fix the bug, recompile, and run again.

You will notice that we calculate the multiplication of all the power of two numbers in the
tests and print. However, if you investigate the output, you will find that the multiplication is
incorrect.

Write-up 12: Compile again with make clean; make LOCAL=1 UBSAN=1. What do you see when
you run ./is_power_of_two? Paste the error that the sanitizer throws. In addition, explain
where and why this error happened. Fix the error you found and explain your fix.

Handout 3 — Homework 1: Getting Started 19

Finally, compile and run the program again and verify that the output is correct. Paste your
program output.

11 Submission

Commit your changes to your repository and check your code style by running clint.py. Submit
the write-up as described in Write-ups 1–12 to Gradescope. You do not need to prepare a separate
document for your write-ups: most of them will be submitted as inline text on Gradescope.
Finally, if you haven’t already, commit and push your final submission to the repository:

$ git commit -am ’Done!’
$ git push origin main

	Immediate action items
	Software engineering
	Virtual machine setup
	Version control
	Visual Studio Code
	C primer
	Basic tools
	Using telerun
	C style guidelines
	Practice with Instrumentation (Useful for Project 1)
	Submission

