
© 2008–2024 by the MIT 6.106 Staff© 2008–2024 by the MIT 6.106 Staff

SPEED

LIMIT

∞PER ORDER OF 6.172

RECITATION 2

BIT HACKS, PROJECT 1 BETA

1

Sit near your project mates!

© 2008–2024 by the MIT 6.106 Staff 2

© 2008–2024 by the MIT 6.106 Staff

Quick Announcements

3

Homework:

1. HW1 Due date has been moved to Jan 23

2. HW2 Start and Due dates remain

unaffected

Advice on the project:

1. Project takes a while to complete, every

attempt needs a correctness check before

a performance check.

2. Ensure that you make a few attempts

every week to ensure success.

© 2008–2024 by the MIT 6.106 Staff

Project Code

4

© 2008–2024 by the MIT 6.106 Staff

Tips for Bit Manipulation

© 2008–2024 by the MIT 6.106 Staff

Tips for Bit Manipulation

● General tips:
○ If manipulating bits, generally want to use unsigned ints

○ If not manipulating bits (arithmetic operations), use signed int.

■ Underflow in unsigned numbers (such as N→0 for loop) doesn’t work nicely

for (int8_t i = 7; i >= 0; i - -) . . .

● Use the appropriate literals
○ 1ULL means 1 unsigned long long which is uint64_t

○ 1 << 63 can give unexpected results. A plain 1 isint32_t

● Never shift by more than the number of bits in the number
○ ((uint64_t) i) >> 64 is undefined behavior (UB)

● Never shift by a negative amount
○ Also UB

© 2008–2024 by the MIT 6.106 Staff

Two’s Complement (mentioned in lecture)

● Positive integers stay the same

● Negative integer: example to get -28
00011100

11100011

00000001

11100100

○ Start with positive integer 28:

○ Flip the digit 0 to be 1 and vice versa:

○ Add 1:

○ We get -28:

○ Check result:

■ 0 * 1 + 0 * 2 + 1 * 4 + 0 * 8 + 0 * 16

+ 1 * 32 + 1 * 64 + 1 * -128 = -28

© 2008–2024 by the MIT 6.106 Staff

Bit Hack

Questions

© 2008–2024 by the MIT 6.106 Staff

© 2008–2024 by the MIT 6.106 Staff

Practice Question

© 2008–2024 by the MIT 6.106 Staff

Why?

11

1. We know x -1 will find the first set bit on x,

when scanning from the least significant bit and

invert all bits till the found bit.

Ex: 11001000 – 1 = 11000111

2. Now, let the number be x= abcd100…

3. x – 1 = abcd011….

4. x & x -1 = abcd000…

5. The above number will be 0 iff abcd are all 0.

6. Which means x must be of the form 00..010…

7. Which represents all and only powers of 2 or 0

© 2008–2024 by the MIT 6.106 Staff

Practice

Question

© 2008–2024 by the MIT 6.106 Staff

Practice

Question

Trace: Take x = 2 => r =1

r = 100…01

r = 11100….01

r = 111111…001

.

.

.

r = 1111….1

r++ will result in 0

We can easily see that if any

bit in x-1 is 1, then r is 0.

Otherwise, r is 1

So, it tests if x-1 is 0, that is if

x is 1.

© 2008–2024 by the MIT 6.106 Staff

Practice

Question

Trace: Take x = 2 => r =1

r = 100…01

r = 11100….01

r = 111111…001

.

.

.

r = 1111….1

r++ will result in 0

We can easily see that if any

bit in x-1 is 1, then r is 0.

Otherwise, r is 1

So, it tests if x-1 is 0, that is if

x is 1.

A – Never

B – Sometimes

C – True

D - True

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 B C D A

1 E F G H

2 I J K L

3 M N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 B C D A

1 E F G H

2 I J K L

3 M N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 B C D A

1 G H E F

2 I J K L

3 M N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 B C D A

1 G H E F

2 I J K L

3 M N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 B C D A

1 G H E F

2 L I J K

3 M N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 B C D A

1 G H E F

2 L I J K

3 M N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 B C D A

1 G H E F

2 L I J K

3 M N O P

Rotate by 4 = no change

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 B C D A

1 G H E F

2 L I J K

3 M N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M C D A

1 B H E F

2 G I J K

3 L N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M C D A

1 B H E F

2 G I J K

3 L N O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I D A

1 B N E F

2 G C J K

3 L H O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I D A

1 B N E F

2 G C J K

3 L H O P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 B N J F

2 G C O K

3 L H D P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 B N J F

2 G C O K

3 L H D P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 B N J F

2 G C O K

3 L H D P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 B N J F

2 G C O K

3 L H D P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 N J F B

2 G C O K

3 L H D P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 N J F B

2 G C O K

3 L H D P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 N J F B

2 O K G C

3 L H D P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 N J F B

2 O K G C

3 L H D P

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 N J F B

2 O K G C

3 P L H D

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 N J F B

2 O K G C

3 P L H D

© 2008–2024 by the MIT 6.106 Staff

Row-column-row

● Way of rotating block of bits

● Algorithm:
○ Rotate row r left by r + 1

○ Rotate col c down by c + 1

○ Rotate row r left by r

0 1 2 3

0 M I E A

1 N J F B

2 O K G C

3 P L H D
0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

Original for Ref:

© 2008–2024 by the MIT 6.106 Staff

Row-column-row practice handout

● Practice executing the RCR algorithm on this handout.

© 2008–2024 by the MIT 6.106 Staff© 2008–2024 by the MIT 6.106 Staff

SPEED

LIMIT

∞PER ORDER OF 6.172

ROTATING COLUMNS

43

© 2008–2024 by the MIT 6.106 Staff

Rotating Columns in Bit Matrix

44

Problem

Input: N × N matrix of bits, stored in row-major order.

Goal: Circularly rotate ith column of bits up i rows.

In the example that follows, we have N = 32. Each row

is stored in a 32-bit word, with column 0 in the most-

significant bit.

© 2008–2024 by the MIT 6.106 Staff

Naive Algorithm

45

const uint32_t N = 32;
const uint32_t mask = 1 << (N-1);
uint32_t A[N];
for (int i = O; i < N; i++){
uint32_t col = O;
// gather bits in column i
for (int j = O; j < N; j++)
col = col | (((A[j] << i) & mask) >> j);

// rotate bits in column i
col = (col << i) | (col >> (N - i));
// put column i back
for (int j = O; j < N; j++)
A[j] = (A[j] & ~(mask >> i)) |

(((col << j) >> i) & (mask >> i));
}

© 2008–2024 by the MIT 6.106 Staff

Naive Algorithm

46

const uint32_t N = 32;
const uint32_t mask = 1 << (N-1);
uint32_t A[N];
for (int i = O; i < N; i++){
uint32_t col = O;
// gather bits in column i
for (int j = O; j < N; j++)
col = col | (((A[j] << i) & mask) >> j);

// rotate bits in column i
col = (col << i) | (col >> (N - i));
// put column i back
for (int j = O; j < N; j++)
A[j] = (A[j] & ~(mask >> i)) |

(((col << j) >> i) & (mask >> i));
}

© 2008–2024 by the MIT 6.106 Staff

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

Rotate columns 2 & 3 down by 2

Divide-and-Conquer Algorithm

© 2008–2024 by the MIT 6.106 Staff

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

Rotate columns 2 & 3 up by 2

Divide-and-Conquer Algorithm

© 2008–2024 by the MIT 6.106 Staff

0 1 2 3

0 A B K L

1 E F O P

2 I J C D

3 M N G H

Rotate columns 2 & 3 up by 2

Divide-and-Conquer Algorithm

© 2008–2024 by the MIT 6.106 Staff

0 1 2 3

0 A B K L

1 E F O P

2 I J C D

3 M N G H

Rotate columns 2 & 3 up by 2

Divide-and-Conquer Algorithm

© 2008–2024 by the MIT 6.106 Staff

0 1 2 3

0 A B K L

1 E F O P

2 I J C D

3 M N G H

Rotate columns 1 & 3 up by 1

Divide-and-Conquer Algorithm

© 2008–2024 by the MIT 6.106 Staff

0 1 2 3

0 A N K H

1 E B O L

2 I F C P

3 M J G D

Rotate columns 1 & 3 up by 1

Divide-and-Conquer Algorithm

© 2008–2024 by the MIT 6.106 Staff

Divide-and-Conquer Algorithm

53

uint32_t A[32], B[32]; // use B as scratch space

// rotate columns 16...31 up 16 positions
uint32_t stay_mask = 0xFFFF0000; // columns that don't move

for (int j = 0; j < 32; j++)
B[j] = (A[j] & stay_mask) | (A[(j+16) % 32] & ~stay_mask);

// rotate columns 8..15 and 24...31 up 8 positions
stay_mask = 0xFF00FF00;

for (int j = 0; j < 32; j++)
A[j] = (B[j] & stay_mask) | (B[(j+8) % 32] & ~stay_mask);

© 2008–2024 by the MIT 6.106 Staff

Divide-and-Conquer Algorithm

54

uint32_t A[32], B[32]; // use B as scratch space

// rotate columns 16...31 up 16 positions
uint32_t stay_mask = 0xFFFF0000; // columns that don't move

for (int j = 0; j < 32; j++)
B[j] = (A[j] & stay_mask) | (A[(j+16) % 32] & ~stay_mask);

// rotate columns 8..15 and 24...31 up 8 positions
stay_mask = 0xFF00FF00;

for (int j = 0; j < 32; j++)
A[j] = (B[j] & stay_mask) | (B[(j+8) % 32] & ~stay_mask);

© 2008–2024 by the MIT 6.106 Staff

Divide-and-Conquer Algorithm

55

uint32_t A[32], B[32]; // use B as scratch space

// rotate columns 16...31 up 16 positions
uint32_t stay_mask = 0xFFFF0000; // columns that don't move

for (int j = 0; j < 32; j++)
B[j] = (A[j] & stay_mask) | (A[(j+16) % 32] & ~stay_mask);

// rotate columns 8..15 and 24...31 up 8 positions
stay_mask = 0xFF00FF00;

for (int j = 0; j < 32; j++)
A[j] = (B[j] & stay_mask) | (B[(j+8) % 32] & ~stay_mask);

But sometimes the asymptotically best algorithms

don’t perform well in practice. You must decide for

yourself.

	Slide 1: RECITATION 2 BIT HACKS, PROJECT 1 BETA
	Slide 2
	Slide 3: Quick Announcements
	Slide 4: Project Code
	Slide 5: Tips for Bit Manipulation
	Slide 6: Tips for Bit Manipulation
	Slide 7: Two’s Complement (mentioned in lecture)
	Slide 8: Bit Hack Questions
	Slide 9
	Slide 10: Practice Question
	Slide 11: Why?
	Slide 13: Practice Question
	Slide 14: Practice Question
	Slide 15: Practice Question
	Slide 16: Row-column-row
	Slide 17: Row-column-row
	Slide 18: Row-column-row
	Slide 19: Row-column-row
	Slide 20: Row-column-row
	Slide 21: Row-column-row
	Slide 22: Row-column-row
	Slide 23: Row-column-row
	Slide 24: Row-column-row
	Slide 25: Row-column-row
	Slide 26: Row-column-row
	Slide 27: Row-column-row
	Slide 28: Row-column-row
	Slide 29: Row-column-row
	Slide 30: Row-column-row
	Slide 31: Row-column-row
	Slide 32: Row-column-row
	Slide 33: Row-column-row
	Slide 34: Row-column-row
	Slide 35: Row-column-row
	Slide 36: Row-column-row
	Slide 37: Row-column-row
	Slide 38: Row-column-row
	Slide 39: Row-column-row
	Slide 40: Row-column-row
	Slide 41: Row-column-row
	Slide 42: Row-column-row practice handout
	Slide 43: ROTATING COLUMNS
	Slide 44: Rotating Columns in Bit Matrix
	Slide 45: Naive Algorithm
	Slide 46: Naive Algorithm
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Divide-and-Conquer Algorithm
	Slide 54: Divide-and-Conquer Algorithm
	Slide 55: Divide-and-Conquer Algorithm

