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The Memory System

The Principle of Locality:
∙ Program access a relatively small portion of the address space at 

any instant of time.
Two Different Types of Locality:
∙ Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)

∙ Spatial Locality (Locality in Space): If an item is referenced, items 
whose addresses are close by tend to be referenced soon (e.g., 
straight-line code, array access)

Last 30 years, HW relied on locality for memory performance

P MEM$
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Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms 
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

faster

Larger

L2 Cache

Blocks
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Cache Issues
Cold Miss
∙ The first time the data is available 
∙ Prefetching may be able to reduce the cost

Capacity Miss
∙ The previous access has been evicted because too much data touched in between
∙ “Working Set” too large
∙ Reorganize the data access so reuse occurs before getting evicted.
∙ Prefetch otherwise

Conflict Miss
∙ Multiple data items mapped to the same location. Evicted even before cache is full
∙ Rearrange data and/or pad arrays
∙ Associativity helps

True Sharing Miss
∙ Thread in another processor wanted the data, it got moved to the other cache
∙ Minimize sharing/locks

False Sharing Miss
∙ Other processor used different data in the same cache line. So the line got moved
∙ Pad data and make sure structures such as locks don’t get into the same cache line
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Intel Core 2 Quad Processor

Core Core

L1 
inst

L1
data

L1 
ins

L1
data

L2

Core Core

L1 
ins

L1
data

L1 
ins

L1
data

L2

Main Memory

L1  Data Cache
Size Line Size Latency Associativty

32 KB 64 bytes 3 cycles 8-way
L1  Instruction Cache

Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8-way

L2  Cache
Size Line Size Latency Associativty

6 MB 64 bytes 14 cycles 24-way

2006 

Memory Sub-system
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for(rep=0; rep < REP; rep++)
for(a=0; a <  N ; a++)

A[a] = A[a] + 1;

Intel Core 2 Quad Processor
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for(rep=0; rep < REP; rep++)
for(a=0; a <  N ; a++)

A[a] = A[a] + 1;

Capacity misses if larger 
than the cache at each level
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Intel 6 Core Processor

Main Memory

L1  Data Cache
Size Line Size Latency Associativty

32 KB 64 bytes 4 ns 8-way
L1  Instruction Cache

Size Line Size Latency Associativty
32 KB 64 bytes 4 ns 4-way

L2  Cache
Size Line Size Latency Associativty

128 KB 64 bytes 10 ns 8-way
L3 Cache

Size Line Size Latency Associativty
8 MB 64 bytes 50 ns 16-way

Main Memory
Size Line Size Latency Associativty

64 bytes 75 ns

Core Core

L1 
inst

L1
dat

L1 
inst

L1
dat

L2 L2

Core Core

L1 
inst

L1
dat

L1 
inst

L1
dat

L2 L2

Core Core

L1 
inst

L1
dat

L1 
inst

L1
dat

L2 L2

L3
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Intel® Nehalem  Microarchitecture – Mem. Sub-system
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for(rep=0; rep < REP; rep++)
for(a=0; a <  N ; a++)

A[a] = A[a] + 1;

Amazing prefetcher

Single core cannot 
saturate the memory 
system
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L1 L2 L3

Intel® Nehalem  Processor
mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
      addr = ((rep + 523)*253573) & mask;
      A[addr] = A[addr] + 1;
}



© 2008-2022 by the MIT 6.172  and 6.106 Lecturers 

mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
      addr = ((rep + 523)*253573) & mask;
      A[addr] = A[addr] + 1;
}
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mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
      addr = ((rep + 523)*253573) & mask;
      A[addr] = A[addr] + 1;
}
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Virtual Memory System
You access virtual memory, your computer has physical memory & disk
∙ 264 virtual memory
∙ Limited physical memory
∙ All allocated memory backed up on disk

Virtual2physical mapped by pages
∙ X86: 4KB small, 2MB large, and 1GB huge pages

OS Manages Virtual memory
∙ Allocates virtual pages, maps them to physical 
∙ Backs pages on disk and bring them in and out
∙ provides a page table to the hardware

Hardware caches page table entries in the TLB
When you access a memory location
∙ If that page is mapped to physical memory 

and the mapping is cached in TLB  aok (~1 cycle)
∙ If mapping is not in TLB  TLB miss. (~100 cycles)

■ The HW gets the mapping from the page table and caches it in TLB

∙ If page is not mapped  Page fault. (~1,000,000 cycles)
■ The OS has to get involved in bringing in the page to physical memory from disk and updating the page table

Virtual 
memory

Physical 
memory Disk
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mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
      addr = ((rep + 523)*253573) & mask;
      A[addr] = A[addr] + 1;
}
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My Nehalem TLB Story

• Page size was set to 4 KB
• Number of TLB entries is 512

• So, total memory that can be mapped by TLB is 2 MB
• L3 cache is 8 MB!

• TLB misses before L3 cache misses!
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Evolution of TLBs

Year 2000 2008 2019

Processor Pentium 4 Nehalem Ice Lake

Max L1 TLB size
64

64 128

Max L2 TLB size 512 2048

Page sizes 4KB, 2MB 4KB, 2MB, 1GB 4KB, 2MB, 1GB
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Intel 12 Core Processor

Main Memory

L1  Data Cache
Size Line Size Latency Associativity

32 KB 64 bytes 4 ns 8-way
L1  Instruction Cache

Size Line Size Latency Associativity
32 KB 64 bytes 4 ns 8-way

L2  Cache
Size Line Size Latency Associativity

256 KB 64 bytes 12 ns 8-way
L3 Cache

Size Line Size Latency Associativity
8 MB 64 bytes 50 ns 16-way

Main Memory
Size Line Size Latency Associativity

64 bytes 85 ns
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Intel® IvyBridge v2 E5-2692 – Memory Sub-system
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L1  Data Cache
Size Line Size Latency Associativity

48 KB 64 bytes 5 ns 12-way
L1  Instruction Cache

Size Line Size Latency Associativity
32 KB 64 bytes 5 ns 8-way

L2  Cache
Size Line Size Latency Associativity

512 KB/core 64 bytes 14 ns 8-way
L3 Cache

Size Line Size Latency Associativity
8 MB 64 bytes 39-45 ns 16-way

2019 

Intel Sunny Cove/Ice Lake – Memory Sub-system
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Dynamic Storage Allocation

Stack Heap Garbage-Collected

Kinds of storage management

25



© 2008-2022 by the MIT 6.172  and 6.106 Lecturers 

Stack Allocation

Stack discipline 
● LIFO (last in, first out).  
● The object that was most recently 

allocated (pushed) is the next to be 
freed (popped).

C call stack
● Stores the local variables for 

function instantiations.
● A frame is pushed onto the stack 

when the function is called.
● The frame is popped when the 

function returns. A cafeteria plate dispenser obeys a 
stack discipline.

26
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Heap Allocation*

● Memory space available to the programmer that can be 
allocated and deallocated without constraint.
■ C provides malloc() and free().
■ C++ provides new and delete.

● Heap storage must be freed explicitly.
● Failure to do so creates a memory leak.  
● Watch out for dangling pointers (pointers to freed memory) and 

double freeing (freeing memory that has already been freed).
● Memory checkers (e.g., AddressSanitizer, Valgrind) can assist in 

finding these pernicious bugs.  Use them!

*Do not confuse with a heap data structure. 

27
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Garbage Collection

● Unlike heap storage, garbage-collected storage need not be 
freed explicitly, greatly aiding in programmer productivity.

● Available in most higher-level languages (e.g., Python, Java, Julia).

● The garbage collector looks for storage that the program can no 
longer access and reclaims it.

● The garbage collector can pause the executing program, run in 
real time, or operate concurrently.

● Garbage collection is usually slower than malloc() and free(), 
because allocated storage is rarely in the L1-cache.

28
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Array and Pointer

used unused

sp

A

30



© 2008-2022 by the MIT 6.172  and 6.106 Lecturers 

Array and Pointer: Allocating

used unused

sp

A

Allocate x bytes

sp += x;
return sp – x;

31
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Array and Pointer: Allocating

used unused

sp

A

Allocate x bytes

Should check for 
stack overflow.

sp += x;sp += x;
return sp – x;

32
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Array and Pointer: Allocating

used unused

sp

A

Allocate x bytes

return sp – x;
No math if stack grows 
downward, but it doesn’t 
really matter, because 
integer arithmetic is fast, 
and the processor core has 
many ALU’s.

sp += x;
return sp – x;

33
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Array and Pointer: Deallocating

used unusedA

Free x bytes
sp –= x;

sp

sp –= x;

34
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Array and Pointer: Deallocating

used unused

sp

A

Free x bytes
sp –= x; Should check for 

stack underflow.

sp –= x;

35
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Summary of Stacks

used unused

sp

A

 Allocating and freeing take Θ(1) time.
 Must free consistent with stack discipline.
 Limited applicability, but great when it works!
 One can allocate on the call stack using alloca(), but this function is 

deprecated, and the compiler is more efficient with fixed-size frames.

Allocate x bytes Free x bytes
sp –= x;sp += x;

return sp – x;

36
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Bitmap Allocator 

• Use a bitmap to keep track of which blocks of A are free and 
which are used.

• Block sizes can be arbitrarily small.
• Bit tricks can help speed the search for a free block — e.g., 

bitmap & (–bitmap) — but the approach is fundamentally 
not scalable (linear-time search).

• A multilayer hierarchy can sometimes be helpful: e.g., a 
bitmap per page and a bitmap for pages.

A usedused free usedused freefreefree

bitmap: 01001101

38
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Free List

A usedused used

free

used

• Every piece of storage has the same size.
• Each unused storage block contains a pointer to the next 

unused block.  
o The block size must be at least as big as a pointer.

struct freelist_item {
  void *next;
}

39
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Free-List: Allocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x; 

used

40
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Free-List: Allocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x; 

x

used

x = free;

41
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Free-List: Allocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x; 

x

Should check free 
!= NULL. 

used

free = free->next;

42
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Free-List: Allocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x; 

x garbage 
pointer

used

return x;

43
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Free-List: Allocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x; 

used used

44
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Free-List: Deallocating

A used used

free

Allocate 1 object
x = free;
free = free->next;
return x; 

free object x
x->next = free;
free = x; 

x

used usedused

45
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Free-List: Deallocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x; 

free object x
x->next = free;
free = x; 

x

used

x->next = free;

46
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Free-List: Deallocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x; 

free object x
x->next = free;
free = x; 

x

used

free = x;

47
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Free-List: Deallocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x; 

free object x
x->next = free;
free = x; 

used

48
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Summary of Free Lists

A usedused used

free

 Allocating and freeing take Θ(1) time.
 Good temporal locality.
 Poor spatial locality due to external fragmentation — blocks 

distributed across virtual memory — which can increase the 
size of the page table and cause disk thrashing.  

 The translation lookaside buffer (TLB) can also be a problem.

used

49
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Fragmentation

Internal Fragmentation
 When blocks larger than what was required are given. 

 i.e. ask for block of size 2k+1 will get a block of size 2k+1

 Worst case: No blocks of asking size left, but a lot of unused 
space in allocated blocks

External Fragmentation
 A free blocks and allocated blocks interspersed.
 Bad spatial locality
 Worst case: no block of a given size, while there are a lot of 

smaller free blocks, but no contiguous blocks to coalesce.  
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Mitigating External Fragmentation

● Keep a free list (or bitmap) per disk page.
● Allocate from the free list for the fullest unfull page.
● To free a block of storage, add it to the free list for the page 

on which the block resides.
● If a page becomes empty (only free-list items), the virtual-

memory system can page it out without substantial impact on 
program performance.

● 90-10 beats 50-50:

>

Probability that 2 random accesses hit the same page 
= .9×.9 + .1×.1 = .82 versus .5×.5 + .5×.5 = .5

51
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Binned Free Lists

● Leverage the efficiency of free lists.
●Accept a bounded amount of internal fragmentation.

0
1
2

r

⋮

Bin k holds memory 
blocks of size 2k.

53
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Binned Free Lists: Allocating

0
1
2

4

3

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

⋮

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
∙Otherwise, find a block in the next larger 

nonempty bin k′ > k, split it up into blocks of sizes 
2k′-1, 2k′-2, …, 2k, 2k, and distribute the pieces.

Allocate 
x bytes

54
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Binned Free Lists: Allocating

0
1
2

4

3

⋮

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
∙Otherwise, find a block in the next larger 

nonempty bin k′ > k, split it up into blocks of sizes 
2k′-1, 2k′-2, …, 2k, 2k, and distribute the pieces.

Allocate 
x bytes

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

55
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Binned Free Lists: Allocating

0
1
2

4

3

⋮

return

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
∙Otherwise, find a block in the next larger 

nonempty bin k′ > k, split it up into blocks of sizes 
2k′-1, 2k′-2, …, 2k, 2k, and distribute the pieces.

Allocate 
x bytes

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

56
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Binned Free Lists: Allocating

0
1
2

4

3

⋮
*If no larger blocks exist, ask the OS to 
allocate more memory.  return

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
∙Otherwise, find a block in the next larger 

nonempty bin k′ > k, split it up into blocks of sizes 
2k′-1, 2k′-2, …, 2k, 2k, and distribute the pieces.*

Allocate 
x bytes

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

57
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Program Segments

stack

bss

data

text

heap

high address

low address

virtual 
memory

dynamically 
allocated

initialized to 0 at 
program start

read from disk

code

58
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How Virtual is Virtual Memory?

Q. Since a 64-bit address space takes over 8 years to write at a rate 
of 64 gigabytes per second (GDDR6 technology), we effectively 
never run out of virtual memory.  So, why not just allocate 
increasing VM addresses and never free?

A. External fragmentation would be horrendous!  The performance 
of the page table would degrade tremendously leading to disk 
thrashing, since all nonzero memory must be backed up on disk 
in page-sized blocks.

Goal of storage allocators
Use as little virtual memory as possible, and try to keep 
the used portions relatively compact.

59
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Analysis of Binned Free Lists

Theorem. Suppose that the maximum amount of heap 
memory in use at any time by a program is M.  If the heap 
is managed by a BFL allocator, the amount of virtual 
memory consumed by heap storage is O(M lg M).

Proof. An allocation request for a block of size x 
consumes 2⌈lg x⌉ ≤ 2x storage.  Thus, the amount of virtual 
memory devoted to blocks of size 2k is at most 2M.  Since 
there are at most lg M free lists, the theorem holds.  ■

⇒ In fact, BFL is 6-competitive with the optimal 
omniscient allocator (assuming no coalescing).
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Coalescing

Binned free lists can sometimes be heuristically improved by 
splicing together adjacent small blocks into a larger block.
● Clever schemes exist for finding adjacent blocks efficiently 

— e.g., the “buddy” system — but the overhead is still 
greater than simple BFL.

● No good theoretical bounds exist that prove the 
effectiveness of coalescing.

● Coalescing seems to reduce fragmentation in practice, 
because heap storage often obeys a stack discipline or 
tends to be deallocated in batches.
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Tradeoff in Page Sizes

Can use either 4KB vs 2MB vs 1GB
∙ 4K: Little internal fragmentation, But TLB can get overwhelmed 
■ 4KB * 2048 = 8MB before running out of TLB entries

∙ 2MB:…
∙ 1GB: Efficient use of TLB, but can result in a lot of internal 

fragmentation
■ Good for applications that have a very large memory footprint
■ 1GB * 1024 = 1TB before running out of TLB entries
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Summary

Manual

Ease of Use

Throughput

Latency

External 
Fragmentation

Example C 
malloc/free

Manual

Ease of Use Bad

Throughput Good

Latency Good

External 
Fragmentation Bad

Example C 
malloc/free
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SPEED
LIMIT∞

GARBAGE COLLECTION
BY REFERENCE COUNTING
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Garbage Collectors

Idea
 Free the programmer from freeing objects.
 A garbage collector identifies and recycles the objects that the 

program can no longer access.
 GC can be built-in (Python, Java, Julia) or do-it-yourself.
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Garbage Collection

Terminology
●Roots are objects directly accessible by the program (globals, stack, etc.).
● Live objects are reachable from the roots by following pointers.
●Dead objects are inaccessible and can be recycled.

How can the GC identify pointers?
●Strong typing — types are known at compile time (or at runtime with JIT).
●Prohibit pointer arithmetic (which may slow down some programs).
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Reference Counting

2
1

1

2

1

3

root

root

root

Keep a count of the number of pointers referencing each 
object.  If the count drops to 0, free the dead object.
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Reference Counting

2
1

1

2

1

3

root

root

root

Keep a count of the number of pointers referencing each 
object.  If the count drops to 0, free the dead object.
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Reference Counting

2
1
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root

root

root

0

3

Keep a count of the number of pointers referencing each 
object.  If the count drops to 0, free the dead object.
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Reference Counting

2
1

1

3

1

3

root

root

root

0

Keep a count of the number of pointers referencing each 
object.  If the count drops to 0, free the dead object.
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Reference Counting
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root
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Keep a count of the number of pointers referencing each 
object.  If the count drops to 0, free the dead object.
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Reference Counting

Keep a count of the number of pointers referencing each 
object.  If the count drops to 0, free the dead object.
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2
1

1

3

1

1

root

root

root

Limitation of Reference Counting

Problem
A cycle is never garbage collected!
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Limitation of Reference Counting

Problem
A cycle is never garbage collected!
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Limitation of Reference Counting

Problem
A cycle is never garbage collected!
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2
1

1

3

1

1

root

root

root

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

Uncollected 
garbage 
stinks!Nevertheless, reference counting 

works well for acyclic structures.
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Summary

Manual Reference 
Counting

Ease of Use Bad

Throughput Good

Latency Good

External 
Fragmentation Bad

Example C 
malloc/free

Manual Reference 
Counting

Ease of Use Bad Medium

Throughput Good Medium

Latency Good Good

External 
Fragmentation Bad Bad

Example C 
malloc/free

C++ 
std::shared_ptr
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SPEED
LIMIT∞

MARK-AND-SWEEP
GARBAGE COLLECTION
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Graph Abstraction

Idea
Objects and pointers 
form a directed graph G 
= (V, E).  Live objects are 
reachable from the roots.  
Use breadth-first search 
to find the live objects.

head tail

FIFO queue Q

for (v ∈ V) {
  if (root(v)) {
    v.mark = 1;
    enqueue(Q, v);
  } else v.mark = 0;
  
while (Q != ∅) {
  u = dequeue(Q);
  for (v ∈ V such that (u,v) ∈ E) 
{
    if (v.mark == 0) {
      v.mark = 1;
      enqueue(Q, v);
    }
  }
}  
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c d eQ

head tail

88



© 2008-2022 by the MIT 6.172  and 6.106 Lecturers 

Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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head tail

Done!
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Mark-and-Sweep

Mark stage: Breadth-first search marked all of the live objects.

Sweep stage: Scan over memory to free unmarked objects.

Mark-and-sweep doesn’t deal with fragmentation
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Summary

Manual Reference 
Counting

Mark and 
Sweep

Ease of Use Bad Medium

Throughput Good Medium

Latency Good Good

External 
Fragmentation Bad Bad

Example C 
malloc/free

C++ 
std::shared_ptr

Manual Reference 
Counting

Mark and 
Sweep

Ease of Use Bad Medium Good

Throughput Good Medium Medium

Latency Good Good Bad

External 
Fragmentation Bad Bad Bad

Example C 
malloc/free

C++ 
std::shared_ptr

Java
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SPEED
LIMIT∞

STOP-AND-COPY
GARBAGE COLLECTION
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Breadth-First Search

r
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r b c d e f gQ

Observation
All live vertices are placed in contiguous storage in Q.
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Copying Garbage Collector

FROM space

next
allocation

dead

live

unused
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Copying Garbage Collector

FROM space

next
allocation

dead

live

unused
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Copying Garbage Collector

FROM space

next
allocation

dead

live

unused
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Copying Garbage Collector

FROM space

next
allocation

dead

live

unused
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Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

104



© 2008-2022 by the MIT 6.172  and 6.106 Lecturers 

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused
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Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

When the FROM space is “full,” copy live storage using 
BFS with the TO space as the FIFO queue.  
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Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

When the FROM space is “full,” copy live storage using 
BFS with the TO space as the FIFO queue.  

TO space

next
allocation
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Updating Pointers

Since the FROM address of an object is not generally equal to 
the TO address of the object, pointers must be updated. 
∙When an object is copied to the TO space, store a 

forwarding pointer in the FROM object, which implicitly 
marks it as moved.
∙When an object is removed from the FIFO queue in the TO 

space, update all its pointers.
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Example

head tail

FROM

TO

Remove an item from the queue.
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Example

head tail

FROM

TO

Remove an item from the queue.
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Example

head tail

FROM

TO

Enqueue adjacent vertices. 
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Example

head tail

FROM

TO

Enqueue adjacent vertices.
Place forwarding pointers in FROM vertices. 
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Example

head tail

FROM

TO

Update the pointers in the removed item to refer to its 
adjacent items in the TO space.  
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Example

head tail

FROM

TO

Update the pointers in the removed item to refer to its 
adjacent items in the TO space.  
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Example

head tail

FROM

TO

Linear time to copy and update all vertices.  
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When Is the FROM Space “Full”?

● Request new heap space equal to the used space, and 
consider the FROM space to be “full” when this heap space 
has been allocated.  

● The cost of garbage collection is proportional to the size of 
the new heap space ⇒ amortized O(1) overhead, assuming 
that the user program touches all the memory allocated.  

● Moreover, the VM space required is O(1) times optimal by 
locating the FROM and TO spaces in different regions of VM 
where they cannot interfere with each other.

used
FROM

heap
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Summary

Manual Reference 
Counting

Mark and 
Sweep

Stop and 
Copy

Ease of Use Bad Medium Good

Throughput Good Medium Medium

Latency Good Good Bad

External 
Fragmentation Bad Bad Bad

Example C 
malloc/free

C++ 
std::shared_ptr

Java

Manual Reference 
Counting

Mark and 
Sweep

Stop and 
Copy

Ease of Use Bad Medium Good Good

Throughput Good Medium Medium Bad

Latency Good Good Bad Bad

External 
Fragmentation Bad Bad Bad Good

Example C 
malloc/free

C++ 
std::shared_ptr

Java C#
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Dynamic Storage Allocation

Lots more is known and unknown about dynamic 
storage allocation.  Strategies include
● buddy system,
● variants of mark-and-sweep,
● generational garbage collection,
● real-time garbage collection,
● multithreaded storage allocation,
● parallel garbage collection,
● etc.
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