
Performance
Engineering of
Software Systems

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

LECTURE 12
Storage Allocation

Saman Amarasinghe
October 25, 2022

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Quiz 1

2

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

MEMORY SYSTEMS

3

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

The Memory System

The Principle of Locality:
∙ Program access a relatively small portion of the address space at

any instant of time.
Two Different Types of Locality:
∙ Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)

∙ Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon (e.g.,
straight-line code, array access)

Last 30 years, HW relied on locality for memory performance

P MEM$

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

faster

Larger

L2 Cache

Blocks

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Cache Issues
Cold Miss
∙ The first time the data is available
∙ Prefetching may be able to reduce the cost

Capacity Miss
∙ The previous access has been evicted because too much data touched in between
∙ “Working Set” too large
∙ Reorganize the data access so reuse occurs before getting evicted.
∙ Prefetch otherwise

Conflict Miss
∙ Multiple data items mapped to the same location. Evicted even before cache is full
∙ Rearrange data and/or pad arrays
∙ Associativity helps

True Sharing Miss
∙ Thread in another processor wanted the data, it got moved to the other cache
∙ Minimize sharing/locks

False Sharing Miss
∙ Other processor used different data in the same cache line. So the line got moved
∙ Pad data and make sure structures such as locks don’t get into the same cache line

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Intel Core 2 Quad Processor

Core Core

L1
inst

L1
data

L1
ins

L1
data

L2

Core Core

L1
ins

L1
data

L1
ins

L1
data

L2

Main Memory

L1 Data Cache
Size Line Size Latency Associativty

32 KB 64 bytes 3 cycles 8-way
L1 Instruction Cache

Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8-way

L2 Cache
Size Line Size Latency Associativty

6 MB 64 bytes 14 cycles 24-way

2006

Memory Sub-system

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

for(rep=0; rep < REP; rep++)
for(a=0; a < N ; a++)

A[a] = A[a] + 1;

Intel Core 2 Quad Processor

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

2 8 32 128 512 2048 8192 32768 131072
0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

2 8 32 128 512 2048 8192 32768 131072

L1 L2

Intel Core 2 Quad Processor

Ru
nt

im
e

pe
r

ac
ce

ss

for(rep=0; rep < REP; rep++)
for(a=0; a < N ; a++)

A[a] = A[a] + 1;

Capacity misses if larger
than the cache at each level

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Intel 6 Core Processor

Main Memory

L1 Data Cache
Size Line Size Latency Associativty

32 KB 64 bytes 4 ns 8-way
L1 Instruction Cache

Size Line Size Latency Associativty
32 KB 64 bytes 4 ns 4-way

L2 Cache
Size Line Size Latency Associativty

128 KB 64 bytes 10 ns 8-way
L3 Cache

Size Line Size Latency Associativty
8 MB 64 bytes 50 ns 16-way

Main Memory
Size Line Size Latency Associativty

64 bytes 75 ns

Core Core

L1
inst

L1
dat

L1
inst

L1
dat

L2 L2

Core Core

L1
inst

L1
dat

L1
inst

L1
dat

L2 L2

Core Core

L1
inst

L1
dat

L1
inst

L1
dat

L2 L2

L3

2008

Intel® Nehalem Microarchitecture – Mem. Sub-system

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

0

0.0000005

0.000001

0.0000015

0.000002

0.0000025

0.000003

0.0000035

0.000004

0.0000045

0 20000 40000 60000 80000 100000 120000 140000
0

0.0000005

0.000001

0.0000015

0.000002

0.0000025

0.000003

0.0000035

0.000004

0.0000045

0 20000 40000 60000 80000 100000 120000 140000

Intel® Nehalem Processor

Ru
nt

im
e

pe
r

ac
ce

ss

for(rep=0; rep < REP; rep++)
for(a=0; a < N ; a++)

A[a] = A[a] + 1;

Amazing prefetcher

Single core cannot
saturate the memory
system

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers
N

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

1E+10
Performance

L1 L2 L3

Intel® Nehalem Processor
mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
 addr = ((rep + 523)*253573) & mask;
 A[addr] = A[addr] + 1;
}

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
 addr = ((rep + 523)*253573) & mask;
 A[addr] = A[addr] + 1;
}

N
0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

1E+10
Performance

Performance

L1 L2 L3

Intel® Nehalem Processor

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers
N

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

1E+10

L1 Cache Miss

Performance

L1 L2 L3

Intel® Nehalem Processor
mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
 addr = ((rep + 523)*253573) & mask;
 A[addr] = A[addr] + 1;
}

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers
N

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

1E+10

L1 Cache Miss

L2 Cache Miss

Performance

L1 L2 L3

Intel® Nehalem Processor
mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
 addr = ((rep + 523)*253573) & mask;
 A[addr] = A[addr] + 1;
}

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers
N

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

1E+10

L1 Cache Miss

L2 Cache Miss

L3 Cache Miss

Performance

L1 L2 L3

Intel® Nehalem Processor
mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
 addr = ((rep + 523)*253573) & mask;
 A[addr] = A[addr] + 1;
}

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers
N

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

1E+10

L1 Cache Miss

L2 Cache Miss

L3 Cache Miss

TLB misses

Performance

L1 L2 L3

Intel® Nehalem Processor
mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
 addr = ((rep + 523)*253573) & mask;
 A[addr] = A[addr] + 1;
}

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Virtual Memory System
You access virtual memory, your computer has physical memory & disk
∙ 264 virtual memory
∙ Limited physical memory
∙ All allocated memory backed up on disk

Virtual2physical mapped by pages
∙ X86: 4KB small, 2MB large, and 1GB huge pages

OS Manages Virtual memory
∙ Allocates virtual pages, maps them to physical
∙ Backs pages on disk and bring them in and out
∙ provides a page table to the hardware

Hardware caches page table entries in the TLB
When you access a memory location
∙ If that page is mapped to physical memory

and the mapping is cached in TLB  aok (~1 cycle)
∙ If mapping is not in TLB  TLB miss. (~100 cycles)

■ The HW gets the mapping from the page table and caches it in TLB

∙ If page is not mapped  Page fault. (~1,000,000 cycles)
■ The OS has to get involved in bringing in the page to physical memory from disk and updating the page table

Virtual
memory

Physical
memory Disk

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers
N

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

1E+10

L1 Cache Miss

L2 Cache Miss

L3 Cache Miss

TLB misses

Performance

Intel® Nehalem Processor
mask = (1<<n) - 1;
for(rep=0; rep < REP; rep++) {
 addr = ((rep + 523)*253573) & mask;
 A[addr] = A[addr] + 1;
}

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

My Nehalem TLB Story

• Page size was set to 4 KB
• Number of TLB entries is 512

• So, total memory that can be mapped by TLB is 2 MB
• L3 cache is 8 MB!

• TLB misses before L3 cache misses!

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Evolution of TLBs

Year 2000 2008 2019

Processor Pentium 4 Nehalem Ice Lake

Max L1 TLB size
64

64 128

Max L2 TLB size 512 2048

Page sizes 4KB, 2MB 4KB, 2MB, 1GB 4KB, 2MB, 1GB

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Intel 12 Core Processor

Main Memory

L1 Data Cache
Size Line Size Latency Associativity

32 KB 64 bytes 4 ns 8-way
L1 Instruction Cache

Size Line Size Latency Associativity
32 KB 64 bytes 4 ns 8-way

L2 Cache
Size Line Size Latency Associativity

256 KB 64 bytes 12 ns 8-way
L3 Cache

Size Line Size Latency Associativity
8 MB 64 bytes 50 ns 16-way

Main Memory
Size Line Size Latency Associativity

64 bytes 85 ns

Cor
e

Cor
e

L
1
i
n
s
t

L
1
d
a
t

L
1
i
n
s
t

L
1
d
a
t

L2 L2

Cor
e

Cor
e

L
1
i
n
s
t

L
1
d
a
t

L
1
i
n
s
t

L
1
d
a
t

L2 L2

Cor
e

Cor
e

L
1
i
n
s
t

L
1
d
a
t

L
1
i
n
s
t

L
1
d
a
t

L2 L2

Cor
e

Cor
e

L
1
i
n
s
t

L
1
d
a
t

L
1
i
n
s
t

L
1
d
a
t

L2 L2

Cor
e

Cor
e

L
1
i
n
s
t

L
1
d
a
t

L
1
i
n
s
t

L
1
d
a
t

L2 L2

Cor
e

Cor
e

L
1
i
n
s
t

L
1
d
a
t

L
1
i
n
s
t

L
1
d
a
t

L2 L2

L3

2012

Intel® IvyBridge v2 E5-2692 – Memory Sub-system

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

L1 Data Cache
Size Line Size Latency Associativity

48 KB 64 bytes 5 ns 12-way
L1 Instruction Cache

Size Line Size Latency Associativity
32 KB 64 bytes 5 ns 8-way

L2 Cache
Size Line Size Latency Associativity

512 KB/core 64 bytes 14 ns 8-way
L3 Cache

Size Line Size Latency Associativity
8 MB 64 bytes 39-45 ns 16-way

2019

Intel Sunny Cove/Ice Lake – Memory Sub-system

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

STORAGE ALLOCATION

24

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Dynamic Storage Allocation

Stack Heap Garbage-Collected

Kinds of storage management

25

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Stack Allocation

Stack discipline
● LIFO (last in, first out).
● The object that was most recently

allocated (pushed) is the next to be
freed (popped).

C call stack
● Stores the local variables for

function instantiations.
● A frame is pushed onto the stack

when the function is called.
● The frame is popped when the

function returns. A cafeteria plate dispenser obeys a
stack discipline.

26

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Heap Allocation*

● Memory space available to the programmer that can be
allocated and deallocated without constraint.
■ C provides malloc() and free().
■ C++ provides new and delete.

● Heap storage must be freed explicitly.
● Failure to do so creates a memory leak.
● Watch out for dangling pointers (pointers to freed memory) and

double freeing (freeing memory that has already been freed).
● Memory checkers (e.g., AddressSanitizer, Valgrind) can assist in

finding these pernicious bugs. Use them!

*Do not confuse with a heap data structure.

27

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Garbage Collection

● Unlike heap storage, garbage-collected storage need not be
freed explicitly, greatly aiding in programmer productivity.

● Available in most higher-level languages (e.g., Python, Java, Julia).

● The garbage collector looks for storage that the program can no
longer access and reclaims it.

● The garbage collector can pause the executing program, run in
real time, or operate concurrently.

● Garbage collection is usually slower than malloc() and free(),
because allocated storage is rarely in the L1-cache.

28

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

STACKS

29

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Array and Pointer

used unused

sp

A

30

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Array and Pointer: Allocating

used unused

sp

A

Allocate x bytes

sp += x;
return sp – x;

31

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Array and Pointer: Allocating

used unused

sp

A

Allocate x bytes

Should check for
stack overflow.

sp += x;sp += x;
return sp – x;

32

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Array and Pointer: Allocating

used unused

sp

A

Allocate x bytes

return sp – x;
No math if stack grows
downward, but it doesn’t
really matter, because
integer arithmetic is fast,
and the processor core has
many ALU’s.

sp += x;
return sp – x;

33

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Array and Pointer: Deallocating

used unusedA

Free x bytes
sp –= x;

sp

sp –= x;

34

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Array and Pointer: Deallocating

used unused

sp

A

Free x bytes
sp –= x; Should check for

stack underflow.

sp –= x;

35

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Summary of Stacks

used unused

sp

A

 Allocating and freeing take Θ(1) time.
 Must free consistent with stack discipline.
 Limited applicability, but great when it works!
 One can allocate on the call stack using alloca(), but this function is

deprecated, and the compiler is more efficient with fixed-size frames.

Allocate x bytes Free x bytes
sp –= x;sp += x;

return sp – x;

36

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

FIXED-SIZE
HEAP ALLOCATION

37

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Bitmap Allocator

• Use a bitmap to keep track of which blocks of A are free and
which are used.

• Block sizes can be arbitrarily small.
• Bit tricks can help speed the search for a free block — e.g.,

bitmap & (–bitmap) — but the approach is fundamentally
not scalable (linear-time search).

• A multilayer hierarchy can sometimes be helpful: e.g., a
bitmap per page and a bitmap for pages.

A usedused free usedused freefreefree

bitmap: 01001101

38

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Free List

A usedused used

free

used

• Every piece of storage has the same size.
• Each unused storage block contains a pointer to the next

unused block.
o The block size must be at least as big as a pointer.

struct freelist_item {
 void *next;
}

39

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Free-List: Allocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x;

used

40

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Free-List: Allocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x;

x

used

x = free;

41

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Free-List: Allocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x;

x

Should check free
!= NULL.

used

free = free->next;

42

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Free-List: Allocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x;

x garbage
pointer

used

return x;

43

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Free-List: Allocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x;

used used

44

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Free-List: Deallocating

A used used

free

Allocate 1 object
x = free;
free = free->next;
return x;

free object x
x->next = free;
free = x;

x

used usedused

45

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Free-List: Deallocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x;

free object x
x->next = free;
free = x;

x

used

x->next = free;

46

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Free-List: Deallocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x;

free object x
x->next = free;
free = x;

x

used

free = x;

47

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Free-List: Deallocating

A usedused used

free

Allocate 1 object
x = free;
free = free->next;
return x;

free object x
x->next = free;
free = x;

used

48

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Summary of Free Lists

A usedused used

free

 Allocating and freeing take Θ(1) time.
 Good temporal locality.
 Poor spatial locality due to external fragmentation — blocks

distributed across virtual memory — which can increase the
size of the page table and cause disk thrashing.

 The translation lookaside buffer (TLB) can also be a problem.

used

49

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Fragmentation

Internal Fragmentation
 When blocks larger than what was required are given.

 i.e. ask for block of size 2k+1 will get a block of size 2k+1

 Worst case: No blocks of asking size left, but a lot of unused
space in allocated blocks

External Fragmentation
 A free blocks and allocated blocks interspersed.
 Bad spatial locality
 Worst case: no block of a given size, while there are a lot of

smaller free blocks, but no contiguous blocks to coalesce.

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Mitigating External Fragmentation

● Keep a free list (or bitmap) per disk page.
● Allocate from the free list for the fullest unfull page.
● To free a block of storage, add it to the free list for the page

on which the block resides.
● If a page becomes empty (only free-list items), the virtual-

memory system can page it out without substantial impact on
program performance.

● 90-10 beats 50-50:

>

Probability that 2 random accesses hit the same page
= .9×.9 + .1×.1 = .82 versus .5×.5 + .5×.5 = .5

51

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

VARIABLE-SIZE
HEAP ALLOCATION

52

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Binned Free Lists

● Leverage the efficiency of free lists.
●Accept a bounded amount of internal fragmentation.

0
1
2

r

⋮

Bin k holds memory
blocks of size 2k.

53

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Binned Free Lists: Allocating

0
1
2

4

3

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

⋮

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
∙Otherwise, find a block in the next larger

nonempty bin k′ > k, split it up into blocks of sizes
2k′-1, 2k′-2, …, 2k, 2k, and distribute the pieces.

Allocate
x bytes

54

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Binned Free Lists: Allocating

0
1
2

4

3

⋮

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
∙Otherwise, find a block in the next larger

nonempty bin k′ > k, split it up into blocks of sizes
2k′-1, 2k′-2, …, 2k, 2k, and distribute the pieces.

Allocate
x bytes

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

55

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Binned Free Lists: Allocating

0
1
2

4

3

⋮

return

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
∙Otherwise, find a block in the next larger

nonempty bin k′ > k, split it up into blocks of sizes
2k′-1, 2k′-2, …, 2k, 2k, and distribute the pieces.

Allocate
x bytes

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

56

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Binned Free Lists: Allocating

0
1
2

4

3

⋮
*If no larger blocks exist, ask the OS to
allocate more memory. return

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
∙Otherwise, find a block in the next larger

nonempty bin k′ > k, split it up into blocks of sizes
2k′-1, 2k′-2, …, 2k, 2k, and distribute the pieces.*

Allocate
x bytes

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

57

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Program Segments

stack

bss

data

text

heap

high address

low address

virtual
memory

dynamically
allocated

initialized to 0 at
program start

read from disk

code

58

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

How Virtual is Virtual Memory?

Q. Since a 64-bit address space takes over 8 years to write at a rate
of 64 gigabytes per second (GDDR6 technology), we effectively
never run out of virtual memory. So, why not just allocate
increasing VM addresses and never free?

A. External fragmentation would be horrendous! The performance
of the page table would degrade tremendously leading to disk
thrashing, since all nonzero memory must be backed up on disk
in page-sized blocks.

Goal of storage allocators
Use as little virtual memory as possible, and try to keep
the used portions relatively compact.

59

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Analysis of Binned Free Lists

Theorem. Suppose that the maximum amount of heap
memory in use at any time by a program is M. If the heap
is managed by a BFL allocator, the amount of virtual
memory consumed by heap storage is O(M lg M).

Proof. An allocation request for a block of size x
consumes 2⌈lg x⌉ ≤ 2x storage. Thus, the amount of virtual
memory devoted to blocks of size 2k is at most 2M. Since
there are at most lg M free lists, the theorem holds. ■

⇒ In fact, BFL is 6-competitive with the optimal
omniscient allocator (assuming no coalescing).

60

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Coalescing

Binned free lists can sometimes be heuristically improved by
splicing together adjacent small blocks into a larger block.
● Clever schemes exist for finding adjacent blocks efficiently

— e.g., the “buddy” system — but the overhead is still
greater than simple BFL.

● No good theoretical bounds exist that prove the
effectiveness of coalescing.

● Coalescing seems to reduce fragmentation in practice,
because heap storage often obeys a stack discipline or
tends to be deallocated in batches.

61

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Tradeoff in Page Sizes

Can use either 4KB vs 2MB vs 1GB
∙ 4K: Little internal fragmentation, But TLB can get overwhelmed
■ 4KB * 2048 = 8MB before running out of TLB entries

∙ 2MB:…
∙ 1GB: Efficient use of TLB, but can result in a lot of internal

fragmentation
■ Good for applications that have a very large memory footprint
■ 1GB * 1024 = 1TB before running out of TLB entries

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Summary

Manual

Ease of Use

Throughput

Latency

External
Fragmentation

Example C
malloc/free

Manual

Ease of Use Bad

Throughput Good

Latency Good

External
Fragmentation Bad

Example C
malloc/free

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

GARBAGE COLLECTION
BY REFERENCE COUNTING

64

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Garbage Collectors

Idea
 Free the programmer from freeing objects.
 A garbage collector identifies and recycles the objects that the

program can no longer access.
 GC can be built-in (Python, Java, Julia) or do-it-yourself.

65

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Garbage Collection

Terminology
●Roots are objects directly accessible by the program (globals, stack, etc.).
● Live objects are reachable from the roots by following pointers.
●Dead objects are inaccessible and can be recycled.

How can the GC identify pointers?
●Strong typing — types are known at compile time (or at runtime with JIT).
●Prohibit pointer arithmetic (which may slow down some programs).

66

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Reference Counting

2
1

1

2

1

3

root

root

root

Keep a count of the number of pointers referencing each
object. If the count drops to 0, free the dead object.

67

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Reference Counting

2
1

1

2

1

3

root

root

root

Keep a count of the number of pointers referencing each
object. If the count drops to 0, free the dead object.

68

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Reference Counting

2
1

1

2

1

3

root

root

root

0

3

Keep a count of the number of pointers referencing each
object. If the count drops to 0, free the dead object.

69

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Reference Counting

2
1

1

3

1

3

root

root

root

0

Keep a count of the number of pointers referencing each
object. If the count drops to 0, free the dead object.

70

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Reference Counting

2
1

1

2

1

3

root

root

root

0

0

2

Keep a count of the number of pointers referencing each
object. If the count drops to 0, free the dead object.

71

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Reference Counting

Keep a count of the number of pointers referencing each
object. If the count drops to 0, free the dead object.

2
1

1

2

1

3

root

root

root

0

0

2

72

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

2
1

1

3

1

1

root

root

root

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

73

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

1
1

1

2

3

1

root

root

root

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

74

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

2
1

1

1

1

root

root

root

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

3

75

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

2
1

1

3

1

1

root

root

root

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

Uncollected
garbage
stinks!Nevertheless, reference counting

works well for acyclic structures.
76

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Summary

Manual Reference
Counting

Ease of Use Bad

Throughput Good

Latency Good

External
Fragmentation Bad

Example C
malloc/free

Manual Reference
Counting

Ease of Use Bad Medium

Throughput Good Medium

Latency Good Good

External
Fragmentation Bad Bad

Example C
malloc/free

C++
std::shared_ptr

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

MARK-AND-SWEEP
GARBAGE COLLECTION

78

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Graph Abstraction

Idea
Objects and pointers
form a directed graph G
= (V, E). Live objects are
reachable from the roots.
Use breadth-first search
to find the live objects.

head tail

FIFO queue Q

for (v ∈ V) {
 if (root(v)) {
 v.mark = 1;
 enqueue(Q, v);
 } else v.mark = 0;

while (Q != ∅) {
 u = dequeue(Q);
 for (v ∈ V such that (u,v) ∈ E)
{
 if (v.mark == 0) {
 v.mark = 1;
 enqueue(Q, v);
 }
 }
}

79

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

Q

head tail

80

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

rQ

head tail

81

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

rQ

head tail

82

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r bQ

head tail

83

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b cQ

head tail

84

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b cQ

head tail

85

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b cQ

head tail

86

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c dQ

head tail

87

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c d eQ

head tail

88

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c d eQ

head tail

89

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c d eQ

head tail

90

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c d e fQ

head tail

91

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c d e fQ

head tail

92

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c d e f gQ

head tail

93

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c d e f gQ

head tail

94

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c d e f gQ

head tail

Done!

95

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Mark-and-Sweep

Mark stage: Breadth-first search marked all of the live objects.

Sweep stage: Scan over memory to free unmarked objects.

Mark-and-sweep doesn’t deal with fragmentation

96

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Summary

Manual Reference
Counting

Mark and
Sweep

Ease of Use Bad Medium

Throughput Good Medium

Latency Good Good

External
Fragmentation Bad Bad

Example C
malloc/free

C++
std::shared_ptr

Manual Reference
Counting

Mark and
Sweep

Ease of Use Bad Medium Good

Throughput Good Medium Medium

Latency Good Good Bad

External
Fragmentation Bad Bad Bad

Example C
malloc/free

C++
std::shared_ptr

Java

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

STOP-AND-COPY
GARBAGE COLLECTION

98

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Breadth-First Search

r

a
b

c

f

e

d

g

h

i

j

r b c d e f gQ

Observation
All live vertices are placed in contiguous storage in Q.

99

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

100

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

101

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

102

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

103

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

104

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

105

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

When the FROM space is “full,” copy live storage using
BFS with the TO space as the FIFO queue.

106

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

When the FROM space is “full,” copy live storage using
BFS with the TO space as the FIFO queue.

TO space

next
allocation

107

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Updating Pointers

Since the FROM address of an object is not generally equal to
the TO address of the object, pointers must be updated.
∙When an object is copied to the TO space, store a

forwarding pointer in the FROM object, which implicitly
marks it as moved.
∙When an object is removed from the FIFO queue in the TO

space, update all its pointers.

108

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Example

head tail

FROM

TO

Remove an item from the queue.

109

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Example

head tail

FROM

TO

Remove an item from the queue.

110

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Example

head tail

FROM

TO

Enqueue adjacent vertices.

111

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Example

head tail

FROM

TO

Enqueue adjacent vertices.
Place forwarding pointers in FROM vertices.

112

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Example

head tail

FROM

TO

Update the pointers in the removed item to refer to its
adjacent items in the TO space.

113

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Example

head tail

FROM

TO

Update the pointers in the removed item to refer to its
adjacent items in the TO space.

114

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Example

head tail

FROM

TO

Linear time to copy and update all vertices.

115

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

When Is the FROM Space “Full”?

● Request new heap space equal to the used space, and
consider the FROM space to be “full” when this heap space
has been allocated.

● The cost of garbage collection is proportional to the size of
the new heap space ⇒ amortized O(1) overhead, assuming
that the user program touches all the memory allocated.

● Moreover, the VM space required is O(1) times optimal by
locating the FROM and TO spaces in different regions of VM
where they cannot interfere with each other.

used
FROM

heap

116

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Summary

Manual Reference
Counting

Mark and
Sweep

Stop and
Copy

Ease of Use Bad Medium Good

Throughput Good Medium Medium

Latency Good Good Bad

External
Fragmentation Bad Bad Bad

Example C
malloc/free

C++
std::shared_ptr

Java

Manual Reference
Counting

Mark and
Sweep

Stop and
Copy

Ease of Use Bad Medium Good Good

Throughput Good Medium Medium Bad

Latency Good Good Bad Bad

External
Fragmentation Bad Bad Bad Good

Example C
malloc/free

C++
std::shared_ptr

Java C#

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Dynamic Storage Allocation

Lots more is known and unknown about dynamic
storage allocation. Strategies include
● buddy system,
● variants of mark-and-sweep,
● generational garbage collection,
● real-time garbage collection,
● multithreaded storage allocation,
● parallel garbage collection,
● etc.

118

	Lecture 12 �Storage Allocation
	Quiz 1
	Memory Systems
	The Memory System
	Levels of the Memory Hierarchy
	Cache Issues
	Memory Sub-system
	Intel Core 2 Quad Processor
	Intel Core 2 Quad Processor
	Intel® Nehalem™ Microarchitecture – Mem. Sub-system
	Intel® Nehalem™ Processor
	Intel® Nehalem™ Processor
	Intel® Nehalem™ Processor
	Intel® Nehalem™ Processor
	Intel® Nehalem™ Processor
	Intel® Nehalem™ Processor
	Intel® Nehalem™ Processor
	Virtual Memory System
	Intel® Nehalem™ Processor
	My Nehalem TLB Story
	Evolution of TLBs
	Intel® IvyBridge™v2 E5-2692 – Memory Sub-system
	Intel Sunny Cove/Ice Lake – Memory Sub-system
	Storage Allocation
	Dynamic Storage Allocation
	Stack Allocation
	Heap Allocation*
	Garbage Collection
	Stacks
	Array and Pointer
	Array and Pointer: Allocating
	Array and Pointer: Allocating
	Array and Pointer: Allocating
	Array and Pointer: Deallocating
	Array and Pointer: Deallocating
	Summary of Stacks
	Fixed-size�heap allocation
	Bitmap Allocator
	Free List
	Free-List: Allocating
	Free-List: Allocating
	Free-List: Allocating
	Free-List: Allocating
	Free-List: Allocating
	Free-List: Deallocating
	Free-List: Deallocating
	Free-List: Deallocating
	Free-List: Deallocating
	Summary of Free Lists
	Fragmentation
	Mitigating External Fragmentation
	Variable-size�heap allocation
	Binned Free Lists
	Binned Free Lists: Allocating
	Binned Free Lists: Allocating
	Binned Free Lists: Allocating
	Binned Free Lists: Allocating
	Program Segments
	How Virtual is Virtual Memory?
	Analysis of Binned Free Lists
	Coalescing
	Tradeoff in Page Sizes
	Summary
	Garbage Collection�by Reference counting
	Garbage Collectors
	Garbage Collection
	Reference Counting
	Reference Counting
	Reference Counting
	Reference Counting
	Reference Counting
	Reference Counting
	Limitation of Reference Counting
	Limitation of Reference Counting
	Limitation of Reference Counting
	Limitation of Reference Counting
	Summary
	Mark-and-Sweep�garbage collection
	Graph Abstraction
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Mark-and-Sweep
	Summary
	Stop-and-Copy�Garbage Collection
	Breadth-First Search
	Copying Garbage Collector
	Copying Garbage Collector
	Copying Garbage Collector
	Copying Garbage Collector
	Copying Garbage Collector
	Copying Garbage Collector
	Copying Garbage Collector
	Copying Garbage Collector
	Updating Pointers
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	When Is the FROM Space “Full”?
	Summary
	Dynamic Storage Allocation

