
Performance
Engineering of
Software Systems

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

LECTURE 11
Measurement and Timing

Srini Devadas
October 18, 2022

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance Engineering
Think, code,

run, run, run…Observe

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Basic Performance-Engineering Workflow

1. Measure the performance of Program A.
2. Make a change to Program A to produce a

hopefully faster Program A′.
3. Measure the performance of Program A′.
4. If A′ beats A, set A = A′.
5. If A is still not fast enough, go to Step 2.

If you can’t measure performance reliably, it is hard
to make many small changes that add up.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

#include <stdio.h>
#include <time.h>

void my_sort(double *A, int n);
void fill(double *A, int n);

int main() {
 int max = 4 * 1000 * 1000;
 int min = 1;
 int step = 20 * 1000;
 double A[max];
 struct timespec start, end;

 for (int n=min; n<max; n+=step) {
 fill(A, n);

 clock_gettime(CLOCK_MONOTONIC, &start);
 my_sort(A, n);
 clock_gettime(CLOCK_MONOTONIC, &end);

 double tdiff = (end.tv_sec - start.tv_sec)
 + 1e-9*(end.tv_nsec - start.tv_nsec);
 printf("size %d, time %f\n", n, tdiff);
 }
 return 0;
}

Library for clock_gettime()

Sorting routine to be timed.

Auxiliary routine for filling array
with random numbers.

Used by clock_gettime():
struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
};

Inspired by a study due
to Sivan Toledo.

Example: Timing a Code for Sorting

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

#include <stdio.h>
#include <time.h>

void my_sort(double *A, int n);
void fill(double *A, int n);

int main() {
 int max = 4 * 1000 * 1000;
 int min = 1;
 int step = 20 * 1000;
 double A[max];
 struct timespec start, end;

 for (int n=min; n<max; n+=step) {
 fill(A, n);

 clock_gettime(CLOCK_MONOTONIC, &start);
 my_sort(A, n);
 clock_gettime(CLOCK_MONOTONIC, &end);

 double tdiff = (end.tv_sec - start.tv_sec)
 + 1e-9*(end.tv_nsec - start.tv_nsec);
 printf("size %d, time %f\n", n, tdiff);
 }
 return 0;
}

Loop over arrays of
increasing length.

Measure time before sorting.

Sort.

Measure time after sorting.

Compute
elapsed time.

Array randomly
filled.

Example: Timing a Code for Sorting

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Running Times for Sorting

array size n

Measured running time
Best fit to c1⋅ n lg n
Best fit to c2 ⋅ n

0.5e6 1e6 1.5e6 2e6 2.5e6 3e6 3.5e6 4e6

60

50

40

30

20

10

0Ru
nn

in
g

tim
e

(s
ec

on
ds

) ×
●

●

–10
0

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Running Times for Sorting

array size n

Measured running time
Best fit to c1⋅ n lg n
Best fit to c2 ⋅ n

0.5e6 1e6 1.5e6 2e6 2.5e6 3e6 3.5e6 4e6

60

50

40

30

20

10

0Ru
nn

in
g

tim
e

(s
ec

on
ds

) ×
●

●

–10
0

What is
going on?

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Dynamic Voltage and Frequency Scaling

DVFS is a technique to dynamically trade power for performance by
adjusting the clock frequency and supply voltage to transistors.
• Reduce operating frequency if chip is too hot or otherwise to

conserve (especially battery) power.
• Reduce voltage if frequency is reduced.
• Turbo Boost increases frequency if the chip is cool.

Power ∝ C V2 f

C = dynamic capacitance
 ≈ roughly area × activity (how many bits toggle)
V = supply voltage
f = clock frequency

Changing frequency and voltage has a cubic effect on power (and heat).

But it wreaks havoc on performance measurements!

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Today’s Lecture

How can one reliably measure the
performance of software?

© 2008–2020 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

OUTLINE

• WHAT STATISTICS AND
METRICS TO MEASURE

• TOOLS TO MEASURE
SOFTWARE PERFORMANCE

• QUIESCING SYSTEMS

• A FEW OTHER ISSUES TO
THINK ABOUT

© 2008–2020 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

OUTLINE

• WHAT STATISTICS AND
METRICS TO MEASURE

• TOOLS TO MEASURE
SOFTWARE PERFORMANCE

• QUIESCING SYSTEMS

• A FEW OTHER ISSUES TO
THINK ABOUT

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Comparing Two Programs

Q. You want to know which of two programs, A and B, is faster,
and you have a slightly noisy computer on which to
measure their performance. What is your strategy?

A. Perform n head-to-head comparisons between A and B,
and evaluate them statistically.

(See Statistics 101.)

NOTE: With a lot of noise, we need lots of trials.

EXAMPLE: Suppose A wins more frequently. Consider the
null hypothesis that B beats A, and calculate the P-value:
“If B beats A, what is the probability that we’d observe that
A beats B as often as we did?” If the P-value is low,
we can accept that A beats B.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Summary Statistics and Noise

Suppose that you measure the performance of a
deterministic program 100 times with the same input on a
computer with some interfering background noise. What
statistic best represents the raw performance of the software?
mean
median
maximum
minimum

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Summary Statistics and Noise

Suppose that you measure the performance of a
deterministic program 100 times with the same input on a
computer with some interfering background noise. What
statistic best represents the raw performance of the software?
mean
median
maximum
minimum✓

Minimum does the best at noise rejection, because we expect that
any measurements higher than the minimum are due to noise.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Summarizing Ratios
Trial Program A Program B

1 9 3

2 8 2

3 2 20

4 10 2

Mean 7.25 6.75

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Summarizing Ratios
Trial Program A Program B A/B

1 9 3 3.00

2 8 2 4.00

3 2 20 0.10

4 10 2 5.00

Mean 7.25 6.75 3.03

Conclusion
Program B is > 3 times better than A.

WRONG!

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Turn the Comparison Upside-Down
Trial Program A Program B A/B B/A

1 9 3 3.00 0.33

2 8 2 4.00 0.25

3 2 20 0.10 10.00

4 10 2 5.00 0.20

Mean 7.25 6.75 3.03 2.70

Paradox
If we look at the ratio B/A, then A is better
by a factor of almost 3.

Observation
The arithmetic mean of A/B is NOT the
inverse of the arithmetic mean of B/A.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Geometric Mean

Formula

Observation
The geometric mean of A/B IS the inverse of
the geometric mean of B/A.

n

Trial Program A Program B A/B B/A

1 9 3 3.00 0.33

2 8 2 4.00 0.25

3 2 20 0.10 10.00

4 10 2 5.00 0.20

Mean (a) 7.25 (a) 6.75 (g) 1.57 (g) 0.64

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Selecting among Summary Statistics
Given server, service as many
requests as possible
∙ Arithmetic mean
∙ CPU utilization

In cloud, most service requests are
satisfied within 100 ms
∙ 90th percentile
∙ Wall-clock time

Best game-playing AI
∙ Arithmetic mean
∙ Win rate

Fit into a machine with 100 MB of
memory
∙ Maximum
∙ Memory use

Support frequent use on a mobile
device
∙ Arithmetic mean
∙ Energy use or CPU utilization

Most environmentally friendly
∙ Arithmetic mean
∙ Carbon footprint

Meet a customer service-level
agreement (SLA)
∙ Weighted combo of statistics
∙ Multiple metrics

© 2008–2020 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

OUTLINE

• WHAT STATISTICS AND
METRICS TO MEASURE

• TOOLS TO MEASURE
SOFTWARE PERFORMANCE

• QUIESCING SYSTEMS

• A FEW OTHER ISSUES TO
THINK ABOUT

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

How Much to Measure

 Measure the whole program.
 E.g., /usr/bin/time
 E.g., perf stat, cachegrind, strace.

 Measure just the part of the program we care about.
 Include timing calls in the program.

 E.g., gettimeofday(), clock_gettime(), rdtsc().

 Create a profile of the program.
 E.g., gdb, Poor Man’s Profiler, gprof, perf record/report.

 Using sampling or instrumentation.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

/usr/bin/time

The time command can measure elapsed time, user time,
and system time for an entire program.

$ /usr/bin/time my-program arg1 arg2
real 0m3.502s
user 0m0.023s
sys 0m0.005s

What does that mean?
∙ real is wall-clock time.
∙ user is the amount of processor time spent in user-mode

code (outside the kernel) within the process.
∙ sys is the amount of processor time spent in the kernel

within the process.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

clock_gettime(CLOCK_MONOTONIC, …)
#include <time.h>

struct timespec start, end;

clock_gettime(CLOCK_MONOTONIC, &start);
function_to_measure();
clock_gettime(CLOCK_MONOTONIC, &end);

double tdiff = (end.tv_sec - start.tv_sec)
 + 1e-9*(end.tv_nsec - start.tv_nsec);

• Typically, clock_gettime(CLOCK_MONOTONIC, …) is fast — roughly 80ns
— about two orders of magnitude faster than an ordinary system call.

• clock_gettime(CLOCK_MONOTONIC, …) has nice guarantees, e.g., it
never runs backwards.

• But clock_gettime(CLOCK_MONOTONIC, …) isn’t always fast.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

rdtsc()

x86 processors provide a time-stamp counter (TSC) in hardware.
You can read TSC as follows:

static inline unsigned long long rdtsc(void) {
 unsigned hi, lo;
 __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
 return (((unsigned long long)lo)
 | (((unsigned long long)hi)<<32));
}

• The time returned is “clock cycles since boot.”
• rdtsc() runs in about 32ns.

__builtin_readcyclecounter();

For older compilers

For newer compilers

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Issues with TSC

Use rdtsc() with caution!
 rdtsc() may give different answers on different cores on the same machine.
 TSC can appear to run backwards, due to process migration.
 Not all cycles take the same amount of time!
 Modern processors change clock frequencies dynamically, e.g., via DVFS

and Turbo Boost.
 Processors reduce their clock frequency for AVX, AVX2, and AVX512

instructions.
 Converting clock cycles to seconds can be tricky.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Program Instrumentation
We can make a profiler by instrumenting the program.

Caution: Watch out for probe effect, where program
instrumentation alters the program’s behavior in unintended ways.

static vec_t vec_add(vec_t a, vec_t b) {
 clock_gettime(CLOCK_MONOTONIC, &start);

vec_t sum = { a.x + b.x, a.y + b.y };
 clock_gettime(CLOCK_MONOTONIC, &end);
 report_time("vec_add", &start, &end);
 return sum;
}

static vec_t vec_scale(vec_t v, double a) {
 clock_gettime(CLOCK_MONOTONIC, &start);
 vec_t scaled = { v.x * a, v.y * a };
 clock_gettime(CLOCK_MONOTONIC, &end);
 report_time("vec_scale", &start, &end);
 return scaled;
}

Instrumentation

Instrumentation

Instrumentation

Instrumentation

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Profiling by Sampling
IDEA: Interrupt the running program at regular intervals, and
look at the stack each time to determine which functions are
usually being executed.
• pmprof, gprof, perf record, and gperftools automate this

strategy to provide profile information for all functions.
• This approach is not accurate if it doesn’t obtain enough

samples. (gprof samples only 1OO times per second.)
• You can do this yourself!
 “Poor Man’s Profiler”: Run your program under gdb, and

type control-C, but at random intervals.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance Surrogates

What could we measure as a surrogate for time?
 Work: Number of executed instructions.
 Using hardware counters (on systems that support them) or

program instrumentation.
 Processor cycles.
 Using rdtsc().

 Memory accesses, or cache hits and misses.
 Using hardware counters
 cachegrind simulation (gives repeatable numbers but slow)

 Span.
 Using Cilkscale.

© 2008–2020 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

OUTLINE

• WHAT STATISTICS AND
METRICS TO MEASURE

• TOOLS TO MEASURE
SOFTWARE PERFORMANCE

• QUIESCING SYSTEMS

• A FEW OTHER ISSUES TO
THINK ABOUT

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Genichi Taguchi and Quality

A B

Question: If you were an Olympic pistol coach, which
shooter would you recruit for your team?

Answer: B, because you just need to teach B to shoot
lower and to the left.

Performance-engineering lesson
If you can reduce variability, you can compensate
for systematic and random measurement errors.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sources of Variability
• Daemons and background jobs

• Interrupts

• Code and data alignment

• System calls

• Operating-system process
scheduling

• Thread placement

• Runtime scheduler

• DVFS and Turbo Boost

• Network traffic

• Multitenancy

• Virtualization

• Hyperthreading

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Aside: Hyperthreading

Fetch
unit Decode ALU Data

mem.GPRs WB

5-stage pipelined processor

Decode ALU Data
mem. WB

With 2-way hyperthreading

GPRsGPRs

Fetch
unit 1

Thread
select

Hyperthreads are not true cores.
They share everything but
processor state.

Fetch
unit 2

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

…
processor : 5
model name : Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz
physical id : 0
siblings : 16
core id : 5
cpu cores : 8
…

processor : 13
model name : Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz
physical id : 0
siblings : 16
core id : 5
cpu cores : 8
…

CPU Information
On Linux, see /proc/cpuinfo for information about a system’s CPU.

Socket (a.k.a., chip)

Which core
on the chip

A “hardware thread”
(e.g., hyperthread)

A second hyperthread on
the same core

One Intel
Haswell chip

Abridged /proc/cpuinfo

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Unquiesced System
Experiment (by Tim Kaler)
• Cilk program to count the primes in an interval
• AWS c4 instance (18 cores)
• 2-way hyperthreading on, Turbo Boost on
• 18 Cilk workers
• 100 runs, each about 1 second

0%

5%

10%

15%

20%

25%

0 10 20 30 40 50 60 70 80 90

Performance Rank of Run

Pe
rc

en
t a

bo
ve

M

in
im

um

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%

0 10 20 30 40 50 60 70 80 90

Quiesced System

Performance Rank of Run

Pe
rc

en
t a

bo
ve

M

in
im

um

Experiment (by Tim Kaler)
• Cilk program to count the primes in an interval
• AWS c4 instance (18 cores)
• 2-way hyperthreading off, Turbo Boost off
• 18 Cilk workers
• 100 runs, each about 1 second

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Quiescing the System

 Minimize the number of other jobs running.
 Shut down daemons and cron jobs.
 Disconnect the network.
 Don’t fiddle with the mouse!
 For serial jobs, don’t run on core 0, where many interrupt

handlers are usually run. See /proc/interrupts.
 Use the Linux CPU frequency governor to control DVFS and

Turbo Boost.
 Use taskset to pin Cilk workers to cores or hardware threads

and avoid hyperthreading.

Many of these mitigations have been done
for you in awsrun. STILL …

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Code Alignment
A small change to one place in the source code can cause
much of the generated machine code to change locations.
Performance can vary due to changes in cache alignment and
page alignment.

01010101
01001000
10001001
11100101
01010011
01001000
10000011
11101100
00001000
10001001
01111101
11110100
10000011
01111101
11110100
00000001
01111111

01010101
01001000
10001001
11100101
10110001
01010011
01001000
10000011
11101100
00001000
10001001
01111101
11110100
10000011
01111101
11110100
00000001
01111111

cache and page
alignment has
changed

Similar: Changing the order in which
the *.o files appear on the linker
command line can have a larger effect
than going between –O2 to –O3.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

LLVM Alignment Switches

LLVM tends to cache-align functions, but it also provides
several compiler switches for controlling alignment:

 -align-all-functions=<uint>
 Force the alignment of all functions (default is 16 bytes).

 -align-all-blocks=<uint>
 Force the alignment of all blocks in the function.

 -align-all-nofallthru-blocks=<uint>
 Force the alignment of all blocks that have no fall-through

predecessors (i.e. don't add nops that are executed).

Aligned code is more likely to avoid performance anomalies,
but it can also sometimes be slower.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Data Alignment

What has the name got to do with it?
 [Mytkowicz, Diwan, Hauswirth, and Sweeney, “Producing wrong data

without doing anything obviously wrong,” 2009.]

Program’s name can affect its speed!

 The executable’s name ends up in an environment variable.
 Environment variables end up on the call stack.
 The length of the name affects the stack alignment.
 Data access slows when crossing page boundaries.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

More Sources of Variability

• Memory and cache effects

• Address-space layout
randomization (ASLR)

• Off-chip communication, such as
over PCI

• Different machines

• Different compilers and libraries

• Link order

• Interpretation and JIT compilation

• Paths and environment variables

• Software bugs

• Older hardware, especially hard drives

© 2008–2020 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

OUTLINE

• WHAT STATISTICS AND
METRICS TO MEASURE

• TOOLS TO MEASURE
SOFTWARE PERFORMANCE

• QUIESCING SYSTEMS

• A FEW OTHER ISSUES TO
THINK ABOUT

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Too fast??

clock_gettime(CLOCK_MONOTONIC, &start);
function_to_measure();
clock_gettime(CLOCK_MONOTONIC, &end);

double tdiff = (end.tv_sec - start.tv_sec)
 + 1e-9*(end.tv_nsec - start.tv_nsec);

0
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006
0.00007
0.00008
0.00009

0 5 10 15 20

The function runs too fast. Noise is an issue.

clock_gettime(CLOCK_MONOTONIC, &start);
for (int n=0; n<20; n++)
 function_to_measure();
clock_gettime(CLOCK_MONOTONIC, &end);

double tdiff = ((end.tv_sec-start.tv_sec)
 + e-9*(end.tv_nsec-start.tv_nsec))/20;

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0 5 10 15 20

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Hot or Cold?

First time called, the data may not be in the cache

for (int n=0; n<20; n++) {
 clock_gettime(CLOCK_MONOTONIC, &start);
 function_to_measure();
 clock_gettime(CLOCK_MONOTONIC, &end);
 tdiff[n] = (end.tv_sec-start.tv_sec)
 + e-9*(end.tv_nsec-start.tv_nsec));
}

Warm cache vs. Cold cache

Other parts of the core may also learn about the code
(Branch predictors, prefetchers etc.)

0
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006
0.00007
0.00008
0.00009

0 5 10 15 20

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Are you running in your neighborhood?

Threads go to sleep and then gets rescheduled

Go to sleep in one core, and wakeup in another!

Impacts performance (data might be still in the caches
of the old core!)

Can use taskset instruction to limit the cores
a thread can be in.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Is your page remote?

Memory is allocated to a DRAM. DRAMs are connected to a socket.

The thread, restricted with traskset, might running in a different
socket than the data

Impacts performance (data has to be fetched via
DRAM  socket 1  socket 2  core)

Page allocation is done by the OS

First-touch policy. Page assigned to the DRAM of the socket of
the first thread accessing the page.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Wise Words from a Giant of Science

To measure is to know.

If you cannot measure it,
you cannot improve it.

William Thomson,
a.k.a., Lord Kelvin

^

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Quiz

Thursday During Class Time

In 50-340

Check Piazza for more details

Good luck!

	Lecture 11 �Measurement and Timing
	Performance Engineering
	Basic Performance-Engineering Workflow
	Example: Timing a Code for Sorting
	Example: Timing a Code for Sorting
	Running Times for Sorting
	Running Times for Sorting
	Dynamic Voltage and Frequency Scaling
	Today’s Lecture
	Slide Number 10
	Slide Number 11
	Comparing Two Programs
	Summary Statistics and Noise
	Summary Statistics and Noise
	Summarizing Ratios
	Summarizing Ratios
	Turn the Comparison Upside-Down
	Geometric Mean
	Selecting among Summary Statistics
	Slide Number 20
	How Much to Measure
	/usr/bin/time
	clock_gettime(CLOCK_MONOTONIC, …)
	rdtsc()
	Issues with TSC
	Program Instrumentation
	Profiling by Sampling
	Performance Surrogates
	Slide Number 29
	Genichi Taguchi and Quality
	Sources of Variability
	Aside: Hyperthreading
	CPU Information
	Unquiesced System
	Quiesced System
	Quiescing the System
	Code Alignment
	LLVM Alignment Switches
	Data Alignment
	More Sources of Variability
	Slide Number 41
	Too fast??
	Hot or Cold?
	Are you running in your neighborhood?
	Is your page remote?
	Wise Words from a Giant of Science
	Quiz

