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Performance Engineering
Think, code,

run, run, run…Observe
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Basic Performance-Engineering Workflow

1. Measure the performance of Program A. 
2. Make a change to Program A to produce a 

hopefully faster Program A′. 
3. Measure the performance of Program A′.
4. If A′ beats A, set A = A′.
5. If A is still not fast enough, go to Step 2.

If you can’t measure performance reliably, it is hard 
to make many small changes that add up.
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#include <stdio.h>
#include <time.h>

void my_sort(double *A, int n); 
void fill(double *A, int n); 

int main() {
  int max = 4 * 1000 * 1000;
  int min = 1;
  int step = 20 * 1000;
  double A[max];
  struct timespec start, end;

  for (int n=min; n<max; n+=step) {
    fill(A, n);

    clock_gettime(CLOCK_MONOTONIC, &start);    
    my_sort(A, n);
    clock_gettime(CLOCK_MONOTONIC, &end);

    double tdiff = (end.tv_sec - start.tv_sec)
        + 1e-9*(end.tv_nsec - start.tv_nsec);
    printf("size %d, time %f\n", n, tdiff);
  }
  return 0;
}

Library for clock_gettime()

Sorting routine to be timed.

Auxiliary routine for filling array 
with random numbers.

Used by clock_gettime():
struct timespec {
  time_t tv_sec; /* seconds */
  long tv_nsec;  /* nanoseconds */
};

Inspired by a study due 
to Sivan Toledo.

Example: Timing a Code for Sorting
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#include <stdio.h>
#include <time.h>

void my_sort(double *A, int n); 
void fill(double *A, int n); 

int main() {
  int max = 4 * 1000 * 1000;
  int min = 1;
  int step = 20 * 1000;
  double A[max];
  struct timespec start, end;

  for (int n=min; n<max; n+=step) {
    fill(A, n);

    clock_gettime(CLOCK_MONOTONIC, &start);    
    my_sort(A, n);
    clock_gettime(CLOCK_MONOTONIC, &end);

    double tdiff = (end.tv_sec - start.tv_sec)
        + 1e-9*(end.tv_nsec - start.tv_nsec);
    printf("size %d, time %f\n", n, tdiff);
  }
  return 0;
}

Loop over arrays of 
increasing length.

Measure time before sorting.

Sort.

Measure time after sorting.

Compute 
elapsed time.

Array randomly 
filled.

Example: Timing a Code for Sorting
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Running Times for Sorting

array size n

Measured running time
Best fit to c1⋅ n lg n
Best fit to c2 ⋅ n
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Running Times for Sorting

array size n

Measured running time
Best fit to c1⋅ n lg n
Best fit to c2 ⋅ n
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going on?
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Dynamic Voltage and Frequency Scaling

DVFS is a technique to dynamically trade power for performance by 
adjusting the clock frequency and supply voltage to transistors.
• Reduce operating frequency if chip is too hot or otherwise to 

conserve (especially battery) power.
• Reduce voltage if frequency is reduced.
• Turbo Boost increases frequency if the chip is cool.

Power ∝ C V2 f

C = dynamic capacitance
 ≈ roughly area × activity (how many bits toggle)
V = supply voltage
f = clock frequency

Changing frequency and voltage has a cubic effect on power (and heat).

But it wreaks havoc on performance measurements!
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Today’s Lecture

How can one reliably measure the 
performance of software?
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OUTLINE

• WHAT STATISTICS AND 
METRICS TO MEASURE

• TOOLS TO MEASURE 
SOFTWARE PERFORMANCE

• QUIESCING SYSTEMS

• A FEW OTHER ISSUES TO 
THINK ABOUT
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Comparing Two Programs

Q. You want to know which of two programs, A and B, is faster, 
and you have a slightly noisy computer on which to 
measure their performance.  What is your strategy?

A. Perform n head-to-head comparisons between A and B, 
and evaluate them statistically.

(See Statistics 101.)

NOTE: With a lot of noise, we need lots of trials.

EXAMPLE: Suppose A wins more frequently.  Consider the 
null hypothesis that B beats A, and calculate the P-value: 
“If B beats A, what is the probability that we’d observe that 
A beats B as often as we did?”  If the P-value is low,
we can accept that A beats B.  
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Summary Statistics and Noise

Suppose that you measure the performance of a 
deterministic program 100 times with the same input on a 
computer with some interfering background noise.  What 
statistic best represents the raw performance of the software?
mean
median
maximum
minimum
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Summary Statistics and Noise

Suppose that you measure the performance of a 
deterministic program 100 times with the same input on a 
computer with some interfering background noise.  What 
statistic best represents the raw performance of the software?
mean
median
maximum
minimum✓

Minimum does the best at noise rejection, because we expect that 
any measurements higher than the minimum are due to noise.
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Summarizing Ratios
Trial Program A Program B

1 9 3

2 8 2

3 2 20

4 10 2

Mean 7.25 6.75
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Summarizing Ratios
Trial Program A Program B A/B

1 9 3 3.00

2 8 2 4.00

3 2 20 0.10

4 10 2 5.00

Mean 7.25 6.75 3.03

Conclusion
Program B is > 3 times better than A.

WRONG!
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Turn the Comparison Upside-Down
Trial Program A Program B A/B B/A

1 9 3 3.00 0.33

2 8 2 4.00 0.25

3 2 20 0.10 10.00

4 10 2 5.00 0.20

Mean 7.25 6.75 3.03 2.70

Paradox
If we look at the ratio B/A, then A is better 
by a factor of almost 3.

Observation
The arithmetic mean of A/B is NOT the 
inverse of the arithmetic mean of B/A.
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Geometric Mean

Formula

Observation
The geometric mean of A/B IS the inverse of 
the geometric mean of B/A.

n

Trial Program A Program B A/B B/A

1 9 3 3.00 0.33

2 8 2 4.00 0.25

3 2 20 0.10 10.00

4 10 2 5.00 0.20

Mean (a) 7.25 (a) 6.75 (g) 1.57 (g) 0.64
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Selecting among Summary Statistics
Given server, service as many 
requests as possible
∙ Arithmetic mean
∙ CPU utilization

In cloud, most service requests are 
satisfied within 100 ms
∙ 90th percentile
∙ Wall-clock time

Best game-playing AI
∙ Arithmetic mean
∙ Win rate

Fit into a machine with 100 MB of 
memory
∙ Maximum
∙ Memory use

Support frequent use on a mobile 
device
∙ Arithmetic mean
∙ Energy use or CPU utilization

Most environmentally friendly
∙ Arithmetic mean
∙ Carbon footprint

Meet a customer service-level 
agreement (SLA)
∙ Weighted combo of statistics
∙ Multiple metrics
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How Much to Measure

 Measure the whole program. 
 E.g., /usr/bin/time
 E.g., perf stat, cachegrind, strace.

 Measure just the part of the program we care about.
 Include timing calls in the program.

 E.g., gettimeofday(), clock_gettime(), rdtsc(). 

 Create a profile of the program.
 E.g., gdb, Poor Man’s Profiler, gprof, perf record/report.

 Using sampling or instrumentation.
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/usr/bin/time

The time command can measure elapsed time, user time, 
and system time for an entire program.

$ /usr/bin/time my-program arg1 arg2
real 0m3.502s
user 0m0.023s
sys  0m0.005s

What does that mean?
∙ real is wall-clock time.
∙ user is the amount of processor time spent in user-mode 

code (outside the kernel) within the process. 
∙ sys is the amount of processor time spent in the kernel 

within the process.
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clock_gettime(CLOCK_MONOTONIC, …)
#include <time.h>

struct timespec start, end;

clock_gettime(CLOCK_MONOTONIC, &start);    
function_to_measure();
clock_gettime(CLOCK_MONOTONIC, &end);

double tdiff = (end.tv_sec - start.tv_sec)
    + 1e-9*(end.tv_nsec - start.tv_nsec);
    

• Typically, clock_gettime(CLOCK_MONOTONIC, …) is fast — roughly 80ns 
— about two orders of magnitude faster than an ordinary system call.

• clock_gettime(CLOCK_MONOTONIC, …) has nice guarantees, e.g., it 
never runs backwards.

• But clock_gettime(CLOCK_MONOTONIC, …) isn’t always fast.
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rdtsc()

x86 processors provide a time-stamp counter (TSC) in hardware.  
You can read TSC as follows:

static inline unsigned long long rdtsc(void) {
   unsigned hi, lo;
   __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
   return (  ((unsigned long long)lo)
           | (((unsigned long long)hi)<<32));
}

• The time returned is “clock cycles since boot.”
• rdtsc() runs in about 32ns.

__builtin_readcyclecounter();

For older compilers

For newer compilers
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Issues with TSC

Use rdtsc() with caution!
 rdtsc() may give different answers on different cores on the same machine.
 TSC can appear to run backwards, due to process migration.
 Not all cycles take the same amount of time!
 Modern processors change clock frequencies dynamically, e.g., via DVFS 

and Turbo Boost.
 Processors reduce their clock frequency for AVX, AVX2, and AVX512 

instructions.
 Converting clock cycles to seconds can be tricky.
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Program Instrumentation
We can make a profiler by instrumenting the program.

Caution: Watch out for probe effect, where program 
instrumentation alters the program’s behavior in unintended ways.

static vec_t vec_add(vec_t a, vec_t b) {
  clock_gettime(CLOCK_MONOTONIC, &start);

vec_t sum = { a.x + b.x, a.y + b.y };
  clock_gettime(CLOCK_MONOTONIC, &end);
  report_time("vec_add", &start, &end);
  return sum;
}

static vec_t vec_scale(vec_t v, double a) {
  clock_gettime(CLOCK_MONOTONIC, &start);
  vec_t scaled = { v.x * a, v.y * a };
  clock_gettime(CLOCK_MONOTONIC, &end);
  report_time("vec_scale", &start, &end);
  return scaled;
}

Instrumentation

Instrumentation

Instrumentation

Instrumentation
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Profiling by Sampling
IDEA: Interrupt the running program at regular intervals, and 
look at the stack each time to determine which functions are 
usually being executed.
• pmprof, gprof, perf record, and gperftools automate this 

strategy to provide profile information for all functions.
• This approach is not accurate if it doesn’t obtain enough 

samples.  (gprof samples only 1OO times per second.) 
• You can do this yourself!
 “Poor Man’s Profiler”: Run your program under gdb, and 

type control-C, but at random intervals.



© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance Surrogates

What could we measure as a surrogate for time?
 Work: Number of executed instructions.
 Using hardware counters (on systems that support them) or 

program instrumentation.
 Processor cycles.
 Using rdtsc().

 Memory accesses, or cache hits and misses.
 Using hardware counters
 cachegrind simulation (gives repeatable numbers but slow)

 Span.
 Using Cilkscale.
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Genichi Taguchi and Quality

A B

Question: If you were an Olympic pistol coach, which 
shooter would you recruit for your team?

Answer: B, because you just need to teach B to shoot 
lower and to the left.

Performance-engineering lesson
If you can reduce variability, you can compensate 
for systematic and random measurement errors.
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Sources of Variability 
• Daemons and background jobs

• Interrupts

• Code and data alignment

• System calls

• Operating-system process 
scheduling

• Thread placement 

• Runtime scheduler

• DVFS and Turbo Boost

• Network traffic

• Multitenancy

• Virtualization

• Hyperthreading
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Aside: Hyperthreading

Fetch 
unit Decode ALU Data 

mem.GPRs WB

5-stage pipelined processor

Decode ALU Data 
mem. WB

With 2-way hyperthreading

GPRsGPRs

Fetch 
unit 1

Thread 
select

Hyperthreads are not true cores.  
They share everything but 
processor state.

Fetch 
unit 2
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…
processor : 5
model name : Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz
physical id : 0
siblings : 16
core id : 5
cpu cores : 8
…

processor : 13
model name : Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz
physical id : 0
siblings : 16
core id : 5
cpu cores : 8
…

CPU Information
On Linux, see /proc/cpuinfo for information about a system’s CPU.

Socket (a.k.a., chip)

Which core 
on the chip

A “hardware thread” 
(e.g., hyperthread)

A second hyperthread on 
the same core

One Intel 
Haswell chip

Abridged /proc/cpuinfo
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Unquiesced System
Experiment (by Tim Kaler)
• Cilk program to count the primes in an interval
• AWS c4 instance (18 cores)
• 2-way hyperthreading on, Turbo Boost on
• 18 Cilk workers
• 100 runs, each about 1 second
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Experiment (by Tim Kaler)
• Cilk program to count the primes in an interval
• AWS c4 instance (18 cores)
• 2-way hyperthreading off, Turbo Boost off
• 18 Cilk workers
• 100 runs, each about 1 second
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Quiescing the System

 Minimize the number of other jobs running.
 Shut down daemons and cron jobs.
 Disconnect the network.
 Don’t fiddle with the mouse!
 For serial jobs, don’t run on core 0, where many interrupt 

handlers are usually run. See /proc/interrupts.
 Use the Linux CPU frequency governor to control DVFS and 

Turbo Boost.
 Use taskset to pin Cilk workers to cores or hardware threads 

and avoid hyperthreading.

Many of these mitigations have been done 
for you in awsrun. STILL …
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Code Alignment
A small change to one place in the source code can cause 
much of the generated machine code to change locations.  
Performance can vary due to changes in cache alignment and 
page alignment.

01010101 
01001000 
10001001
11100101 
01010011 
01001000
10000011 
11101100 
00001000
10001001 
01111101 
11110100
10000011 
01111101 
11110100
00000001 
01111111

01010101 
01001000 
10001001
11100101 
10110001
01010011 
01001000
10000011 
11101100 
00001000
10001001 
01111101 
11110100
10000011 
01111101 
11110100
00000001 
01111111

cache and page 
alignment has 
changed

Similar: Changing the order in which 
the *.o files appear on the linker 
command line can have a larger effect 
than going between –O2 to –O3.
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LLVM Alignment Switches

LLVM tends to cache-align functions, but it also provides 
several compiler switches for controlling alignment:

 -align-all-functions=<uint> 
 Force the alignment of all functions (default is 16 bytes).

 -align-all-blocks=<uint> 
 Force the alignment of all blocks in the function. 

 -align-all-nofallthru-blocks=<uint> 
 Force the alignment of all blocks that have no fall-through 

predecessors (i.e. don't add nops that are executed).

Aligned code is more likely to avoid performance anomalies, 
but it can also sometimes be slower. 
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Data Alignment

What has the name got to do with it?
 [Mytkowicz, Diwan, Hauswirth, and Sweeney, “Producing wrong data 

without doing anything obviously wrong,” 2009.]

Program’s name can affect its speed!

 The executable’s name ends up in an environment variable.
 Environment variables end up on the call stack.
 The length of the name affects the stack alignment.
 Data access slows when crossing page boundaries.
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More Sources of Variability 

• Memory and cache effects

• Address-space layout 
randomization (ASLR)

• Off-chip communication, such as 
over PCI

• Different machines

• Different compilers and libraries

• Link order

• Interpretation and JIT compilation

• Paths and environment variables

• Software bugs

• Older hardware, especially hard drives
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Too fast??

clock_gettime(CLOCK_MONOTONIC, &start);    
function_to_measure();
clock_gettime(CLOCK_MONOTONIC, &end);

double tdiff = (end.tv_sec - start.tv_sec)
    + 1e-9*(end.tv_nsec - start.tv_nsec);

0
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006
0.00007
0.00008
0.00009

0 5 10 15 20

The function runs too fast. Noise is an issue. 

clock_gettime(CLOCK_MONOTONIC, &start);
for (int n=0; n<20; n++) 
   function_to_measure();
clock_gettime(CLOCK_MONOTONIC, &end);

double tdiff = ((end.tv_sec-start.tv_sec)
   + e-9*(end.tv_nsec-start.tv_nsec))/20;

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0 5 10 15 20
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Hot or Cold?

First time called, the data may not be in the cache

for (int n=0; n<20; n++) { 
   clock_gettime(CLOCK_MONOTONIC, &start);
   function_to_measure();
   clock_gettime(CLOCK_MONOTONIC, &end);
  tdiff[n] = (end.tv_sec-start.tv_sec)
   + e-9*(end.tv_nsec-start.tv_nsec));
}

Warm cache vs. Cold cache

Other parts of the core may also learn about the code
(Branch predictors, prefetchers etc.)

0
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006
0.00007
0.00008
0.00009

0 5 10 15 20
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Are you running in your neighborhood?

Threads go to sleep and then gets rescheduled

Go to sleep in one core, and wakeup in another!

Impacts performance (data might be still in the caches
of the old core!)

Can use taskset instruction to limit the cores 
a thread can be in.
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Is your page remote?

Memory is allocated to a DRAM. DRAMs are connected to a socket.

The thread, restricted with traskset, might running in a different 
socket than the data

Impacts performance (data has to be fetched via 
DRAM  socket 1  socket 2  core)

Page allocation is done by the OS

First-touch policy. Page assigned to the DRAM of the socket of 
the first thread accessing the page.
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Wise Words from a Giant of Science

To measure is to know.

If you cannot measure it, 
you cannot improve it.

William Thomson, 
a.k.a., Lord Kelvin

^
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Quiz

Thursday During Class Time

In 50-340

Check Piazza for more details

Good luck!
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