
© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance
Engineering of
Software Systems

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

LECTURE 2
Bentley Rules for
Optimizing Work
Saman Amarasinghe
September 13, 2022

1

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Work

Definition.
The work of a program (on a given input) is the sum
total of all the operations executed by the program.

2

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Reducing Work

● Less work ≈ faster code.

● Reducing the work of a program does not automatically reduce its
running time, however, due to the complex nature of computer hardware:
 instruction-level parallelism (ILP),
 caching,
 vectorization,
 speculation and branch prediction,
 etc.

● Nevertheless, reducing the work serves as a good heuristic for reducing
overall running time.

● Algorithm design can produce dramatic reductions in the work to solve a
problem, as when a Θ(n lg n)-time sort replaces a Θ(n2)-time sort.

3

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

BENTLEY RULES FOR
OPTIMIZING WORK

4

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Jon Louis Bentley

1982
5

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

New Bentley Rules

Data structures
● Packing and encoding
● Augmentation
● Caching
● Precomputation
● Compile-time initialization
● Sparsity

 Loops
● Loop unrolling
● Hoisting
● Sentinels
● Loop fusion
● Eliminating wasted iterations

Logic
● Constant folding and propagation
● Common-subexpression elimination
● Algebraic identities
● Creating a fast path
● Short-circuiting
● Ordering tests
● Combining tests

Functions
● Inlining
● Tail-recursion elimination
● Coarsening recursion

6

Loops Functions

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

DATA STRUCTURES

7

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Packing and Encoding
The idea of packing is to store more than one data value in a
machine word. The related idea of encoding is to convert
data values into a representation that requires fewer bits.

Example: Encoding dates
● The string “September 3, 2020” can be stored in 17 bytes —

more than two 64-bit words — which must must move
whenever the date is manipulated.

● Assuming that we only store dates between 4096 B.C.E. and 4096
C.E., there are about 365.25 × 8192 ≈ 3 M dates, which can be
encoded in ⎡lg(3×106)⎤ = 22 bits, easily fitting in a 32-bit word.

● Problem: How can we represent dates compactly so that
determining the year, month, and day is fast?

8

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Packing and Encoding (2)

Example: Packing dates
● Let us pack the three fields into a word:

typedef struct {
 int year: 13;
 int month: 4;
 int day: 5;
} date_t;

● This packed representation still only takes 22 bits, but the
individual fields can be extracted much more quickly than
if we had encoded the 3 M dates as sequential integers.

9

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Augmentation

The idea of data-structure augmentation is to add
information to a data structure to make common operations
do less work.

Example: Appending singly linked lists.

head

head tail

●Appending one list to
another requires walking
the length of the first list to
set its null pointer to the
start of the second.

●Augmenting the list with a
tail pointer allows
appending to operate in
constant time.

10

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Caching

The idea of caching is to store results that have been accessed
recently so that the program need not compute them again.

double hypotenuse(double A, double B) {
 return sqrt(A*A + B*B);
} double cached_A = 0.0;

double cached_B = 0.0;
double cached_h = 0.0;

double hypotenuse(double A, double B) {
 if (A == cached_A && B == cached_B) {
 return cached_h;
 }
 cached_A = A;
 cached_B = B;
 cached_h = sqrt(A*A + B*B);
 return cached_h;
}

About 30% faster
if cache is hit 2/3
of the time.

11

Before

After

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Precomputation

The idea of precomputation is to perform calculations in
advance so as to avoid doing them at “mission-critical” times.

Example: Binomial coefficients

Note: Computing the “choose” function by implementing this
formula can be expensive (lots of multiplications), and watch
out for integer overflow for even modest values of n and k.

Idea: Precompute the table of coefficients when initializing,
and perform table look-up at runtime.

12

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Step 1: Pascal’s Triangle

int choose(int n, int k) {
 if (n < k) return 0;
 if (k == 0) return 1;
 return choose(n-1, k-1) + choose(n-1, k);
}

1 0 0 0 0 0 0 0 0

 1 1 0 0 0 0 0 0 0

 1 2 1 0 0 0 0 0 0

 1 3 3 1 0 0 0 0 0

 1 4 6 4 1 0 0 0 0

 1 5 10 10 5 1 0 0 0

 1 6 15 20 15 6 1 0 0

 1 7 21 35 35 21 7 1 0

 1 8 28 56 70 56 28 8 1

13

n

k

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Step 2: Precomputing Pascal

#define CHOOSE_SIZE 100
int choose[CHOOSE_SIZE][CHOOSE_SIZE];

void init_choose() {
 for (int n = 0; n < CHOOSE_SIZE; ++n) {
 choose[n][0] = 1;
 choose[n][n] = 1;
 }
 for (int n = 1; n < CHOOSE_SIZE; ++n) {
 choose[0][n] = 0;
 for (int k = 1; k < n; ++k) {
 choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
 choose[k][n] = 0;
 }
 }
}

Now, whenever we need a binomial coefficient (less than
100), we can simply index the choose array.

14

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Compile-Time Initialization

The idea of compile-time initialization is to store the values of
constants during compilation, saving work at execution time.

int choose[10][10] = {
 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, },
 { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, },
 { 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, },
 { 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, },
 { 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, },
 { 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, },
 { 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, },
 { 1, 7, 21, 35, 35, 21, 7, 1, 0, 0, },
 { 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, },
 { 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, },
};

Example

15

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Compile-Time Initialization (2)

#define N 100
int main(int argc, const char *argv[]) {
 init_choose();
 printf("#define N %3d\n”, N);
 printf("int choose[N][N] = {\n");
 for (int a = 0; a < N; ++a) {
 printf(" {");
 for (int b = 0; b < N; ++b) {
 printf("%3d, ", choose[a][b]);
 }
 printf("},\n");
 }
 printf("};\n");
}

Idea: Create large static tables by metaprogramming.

16

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Compile-Time Initialization (3)

static dyn_var<int> choose(dyn_var<int> n, dyn_var<int> k, const int MAX_N) {
 int comp[MAX_N][MAX_N];
 for (int i = 0; i < MAX_N; i++) {
 comp[i][0] = 1;
 comp[i][i] = 1;
 }
 for (int i = 1; i < MAX_N; ++i) {
 comp[0][i] = 0;
 for (int j = 1; j < i; ++j) {
 comp[i][j] = comp[i-1][j-1] + comp[i-1][j];
 comp[j][i] = 0;
 }
 }
 dyn_var<int[]> comp_r;
 resize(comp_r, MAX_N * MAX_N);
 for (static_var<int> i = 0; i < MAX_N * MAX_N; i++) {
 comp_r[i] = comp[i / MAX_N][i % MAX_N];
 }
 return comp_r[n * MAX_N + k];
}

Idea: Multi-stage Programming

17
See the BuildIt research project if you are interested (https://buildit.so/)

int choose (int arg0, int arg1) {
 int var0 = arg1;
 int var1 = arg0;
 int var2[100];
 var2[0] = 1;
 var2[1] = 0;
 var2[2] = 0;
 …
 var2[94] = 126;
 var2[95] = 126;
 var2[96] = 84;
 var2[97] = 36;
 var2[98] = 9;
 var2[99] = 1;
 int var3 = var2[(var1*10)+ var0];
 return var3;
}

https://buildit.so/

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sparsity

The idea of exploiting sparsity is to avoid storing and computing
on zeroes. “The fastest way to compute is not to compute at all.”

Example: Matrix-vector multiplication

Dense matrix-vector multiplication performs n2 = 36 scalar
multiplies, but only 14 entries are nonzero.

18

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sparsity

The idea of exploiting sparsity is to avoid storing and computing
on zeroes. “The fastest way to compute is not to compute at all.”

Example: Matrix-vector multiplication

Dense matrix-vector multiplication performs n2 = 36 scalar
multiplies, but only 14 entries are nonzero.

19

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

1

Sparsity (2)

Compressed Sparse Rows (CSR)
0 1 2 3 4 5 6 7 8 9 10 11 12 13

rows: [0 2 6 8 10 11 14]

cols:[0 4 1 2 4 5 3 5 0 3 0 4 3 4]
vals:[3 1 4 1 5 9 2 6 5 3 5 8 9 7]

0 1 2 3 4 5

0

2
3
4
5

n = 6
nnz = 14

Storage is O(n+nnz) instead of n2

20

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sparsity (3)

typedef struct {
 int n, nnz;
 int *rows; // length n
 int *cols; // length nnz
 double *vals; // length nnz
} sparse_matrix_t;

void spmv(sparse_matrix_t *A, double *x, double *y) {
 for (int i = 0; i < A->n; i++) {
 y[i] = 0;
 for (int k = A->rows[i]; k < A->rows[i+1]; k++) {
 int j = A->cols[k];
 y[i] += A->vals[k] * x[j];
 }
 }
}

CSR matrix-vector multiplication

Number of scalar multiplications = nnz, which is
potentially much less than n2.

21

See the TACO research project if you are interested (https://tensor-compiler.org/)

https://tensor-compiler.org/

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sparsity (3)

typedef struct {
 int n, nnz;
 int *rows; // length n
 int *cols; // length nnz
 double *vals; // length nnz
} sparse_matrix_t;

void spmv(sparse_matrix_t *A, double *x, double *y) {
 for (int i = 0; i < A->n; i++) {
 y[i] = 0;
 for (int k = A->rows[i]; k < A->rows[i+1]; k++) {
 int j = A->cols[k];
 y[i] += A->vals[k] * x[j];
 }
 }
}

CSR matrix-vector multiplication

Number of scalar multiplications = nnz, which is
potentially much less than n2.

22

See the TACO research project if you are interested (https://tensor-compiler.org/)

8k x 8k double precision matrix

https://tensor-compiler.org/

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sparsity (4)

Storing a static sparse graph 0

1

2

3

4

0 2 5 5 6 7

1 3 2 3 4 2 2

offsets

edges

Vertex ID 0 1 2 3 4

 Many graph algorithms run efficiently on this
representation, e.g., breadth-first search, PageRank.

 Edge weights can be stored in an additional array or by
making each edges element a record containing the both
the edge index and the edge weight.

23

See the GraphIt research project if you are interested (https://graphit-lang.org/)

https://graphit-lang.org/

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

LOGIC

24

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Constant Folding and Propagation

The idea of constant folding and propagation is to evaluate
constant expressions and substitute the result into further
expressions, all during compilation.
#include <math.h>

void orrery() {
 const double radius = 6371000.0;
 const double diameter = 2 * radius;
 const double circumference = M_PI * diameter;
 const double cross_area = M_PI * radius * radius;
 const double surface_area =
 circumference * diameter;
 const double volume =
 4 * M_PI * radius * radius * radius / 3;
 // ...
}

With a sufficiently high optimization level, all the expressions
are evaluated at compile-time.

25

1https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg

mechanical orrery 1

https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Common-Subexpression Elimination
The idea of common-subexpression elimination is to avoid
computing the same expression multiple times by evaluating the
expression once and reusing the result when you later need it.

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

26

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Common-Subexpression Elimination
The idea of common-subexpression elimination is to avoid
computing the same expression multiple times by evaluating the
expression once and storing the result for later use.

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

The third line cannot be replaced by c = a, because the
value of b changes in the second line.

27

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Algebraic Identities

The idea of exploiting algebraic identities is to replace
expensive algebraic expressions with algebraic equivalents
that require less work.
#include <stdbool.h>
#include <math.h>

typedef struct {
 double x, y, z; // spatial coordinates
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
 double d = sqrt(square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z));
 return d <= b1->r + b2->r;
}

28

Expensive
routine!

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Algebraic Identities

The idea of exploiting algebraic identities is to replace
expensive algebraic expressions with algebraic equivalents
that require less work.

29

#include <stdbool.h>
#include <math.h>

typedef struct {
 double x, y, z; // spatial coordinates
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
 double d = sqrt(square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z));
 return d <= b1->r + b2->r;
}

bool collides(ball_t *b1, ball_t *b2) {
 double dsquared = square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z);
 return dsquared <= square(b1->r + b2->r);
}

exactly when
.

Caution: Be careful
with floating point!

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

#include <stdbool.h>
#include <math.h>

typedef struct {
 double x, y, z; // spatial coordinates
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
 double dsquared = square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z);
 return dsquared <= square(b1->r + b2->r);
}

Creating a Fast Path

30

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Creating a Fast Path

double dsquared = square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z);
 return dsquared <= square(b1->r + b2->r);
}

#include <stdbool.h>
#include <math.h>

typedef struct {
 double x, y, z; // spatial coordinates
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {

31

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Creating a Fast Path

double dsquared = square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z);
 return dsquared <= square(b1->r + b2->r);
}

#include <stdbool.h>
#include <math.h>

typedef struct {
 double x, y, z; // spatial coordinates
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
if ((abs(b1->x – b2->x) > (b1->r + b2->r)) ||

 (abs(b1->y – b2->y) > (b1->r + b2->r)) ||
 (abs(b1->z – b2->z) > (b1->r + b2->r)))
 return false;

32

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Short-Circuiting

When performing a series of tests, the idea of short-circuiting
is to stop evaluating as soon as you know the answer.

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 sum += A[i];
 }
 return sum > limit;
}

33

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Short-Circuiting

When performing a series of tests, the idea of short-circuiting
is to stop evaluating as soon as you know the answer.

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 sum += A[i];
 }
 return sum > limit;
}

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 sum += A[i];
 if (sum > limit) {
 return true;
 }
 }
 return false;
}

34

Before

After

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Ordering Tests

Consider code that executes a sequence of logical tests. The
idea of ordering tests is to perform those that are more often
“successful” — a particular alternative is selected by the test
— before tests that are rarely successful.

#include <stdbool.h>
bool is_whitespace(char c) {
 return (c == '\r' || c == '\t' || c == ' ' || c == '\n');
}

#include <stdbool.h>
bool is_whitespace(char c) {
 return (c == ' ' || c == '\n' || c == '\t' || c == '\r');
}

35

Note that && and || are short-circuiting logical operators,
whereas & and | are not.

Before

After

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Combining Tests

The idea of combining tests is to replace a sequence of tests
with one test or switch.

void full_add(int a,
 int b,
 int c,
 int *sum,
 int *carry) {
 if (a == 0) {
 if (b == 0) {
 if (c == 0) {
 *sum = 0;
 *carry = 0;
 } else {
 *sum = 1;
 *carry = 0;
 }
 } else {
 if (c == 0) {
 *sum = 1;
 *carry = 0;
 } else {
 *sum = 0;
 *carry = 1;
 }
 }

 } else {
 if (b == 0) {
 if (c == 0) {
 *sum = 1;
 *carry = 0;
 } else {
 *sum = 0;
 *carry = 1;
 }
 } else {
 if (c == 0) {
 *sum = 0;
 *carry = 1;
 } else {
 *sum = 1;
 *carry = 1;
 }
 }
 }
}

a b c carry sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full adder

36

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Combining Tests (2)

The idea of combining tests is to replace a sequence of tests
with one test or switch.

void full_add(int a,
 int b,
 int c,
 int *sum,
 int *carry) {
 int test = ((a == 1) << 2)
 | ((b == 1) << 1)
 | (c == 1);
 switch(test) {
 case 0:
 *sum = 0;
 *carry = 0;
 break;
 case 1:
 *sum = 1;
 *carry = 0;
 break;
 case 2:
 *sum = 1;
 *carry = 0;
 break;

 case 3:
 *sum = 0;
 *carry = 1;
 break;
 case 4:
 *sum = 1;
 *carry = 0;
 break;
 case 5:
 *sum = 0;
 *carry = 1;
 break;
 case 6:
 *sum = 0;
 *carry = 1;
 break;
 case 7:
 *sum = 1;
 *carry = 1;
 break;
 }
}

a b c carry sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full adder

In this case, the
outputs can be
computed
mathematically.

37

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

LOOPS

38

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Why Loops?

Loops are often the focus of performance optimization. Why?

Consider this thought experiment:
● Suppose that a 2 GHz processor can execute 1 instruction

per clock cycle.
● Suppose that a program contains 16 GB of instructions, but

it is all simple straight-line code, i.e., no backwards branches.
● Question: How long does the code take to run?

Answer: at most 8 seconds!

Loops account for a lot of work!

39

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

What Happens When a Loop Runs?

int sum = 0;
for (int i = 0; i < N; i++) {
 sum += A[i];
}

int sum = 0;
int i = 0;
if (i >= N)
 goto loop_exit;
sum += A[i];
i++;
if (i >= N)
 goto loop_exit;
sum += A[i];
i++;
if (i >= N)
 goto loop_exit;
sum += A[i];
i++;
if (i >= N)
 goto loop_exit;
sum += A[i];
i++;
if (i >= N)
 goto loop_exit;
// ...

40

A simple loop

Pseudocode for
loop execution

Loop
control

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Loop Unrolling

Loop unrolling attempts to save work by combining
several consecutive iterations of a loop into a single iteration,
thereby reducing the total number of iterations of the loop
and, consequently, the number of times that the instructions
that control the loop must be executed.

● Full loop unrolling: All iterations are unrolled.

●Partial loop unrolling: Several, but not all, of the iterations
are unrolled.

41

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Full Loop Unrolling

int sum = 0;
for (int i = 0; i < 10; i++) {
 sum += A[i];
}

int sum = 0;
sum += A[0];
sum += A[1];
sum += A[2];
sum += A[3];
sum += A[4];
sum += A[5];
sum += A[6];
sum += A[7];
sum += A[8];
sum += A[9];

42

Before After

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Partial Loop Unrolling

int sum = 0;
for (int i = 0; i < n; ++i) {
 sum += A[i];
}

int sum = 0;
int j;
for (j = 0; j < n-3; j += 4) {
 sum += A[j];
 sum += A[j+1];
 sum += A[j+2];
 sum += A[j+3];
}
for (int i = j; i < n; ++i) {
 sum += A[i];
}

Benefits of loop unrolling
• Fewer instructions devoted to loop control.
• Enables more compiler optimizations.
Caution: Unrolling too much can cause poor use of the
instruction cache, because the code is bigger.

43

Before After

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Hoisting

The goal of hoisting — also called loop-invariant code motion
— is to avoid recomputing loop-invariant code each time
through the body of a loop.

#include <math.h>

void scale(double *X, double *Y, int N) {
 for (int i = 0; i < N; i++) {
 Y[i] = X[i] * exp(sqrt(M_PI/2));
 }
} #include <math.h>

void scale(double *X, double *Y, int N) {
 double factor = exp(sqrt(M_PI/2));
 for (int i = 0; i < N; i++) {
 Y[i] = X[i] * factor;
 }
}

44

Before

After

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Hoisting

The goal of hoisting — also called loop-invariant code motion
— is to avoid recomputing loop-invariant code each time
through the body of a loop.

#include <math.h>

void scale(double *X, double *Y, int N) {
 for (int i = 0; i < N; i++) {
 Y[i] = X[i] * exp(sqrt(M_PI/N));
 }
}

45

Before

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sentinels

Sentinels are special dummy values placed in a data structure
to simplify the logic of boundary conditions, and in particular,
the handling of loop-exit tests.

#include <stdint.h>
#include <stdbool.h>

bool overflow(uint64_t *A, size_t n) {
 // All elements of A are nonnegative
 uint64_t sum = 0;
 for (size_t i = 0; i < n; ++i) {
 sum += A[i];
 if (sum < A[i]) return true;
 }
 return false;
}

46

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sentinels

Sentinels are special dummy values placed in a data structure
to simplify the logic of boundary conditions, and in particular,
the handling of loop-exit tests.

#include <stdint.h>
#include <stdbool.h>

bool overflow(uint64_t *A, size_t n) {
 // All elements of A are nonnegative
 uint64_t sum = 0;
 for (size_t i = 0; i < n; ++i) {
 sum += A[i];
 if (sum < A[i]) return true;
 }
 return false;
}

47

Before

#include <stdint.h>
#include <stdbool.h>

// Assumes that A[n] and A[n+1] exist and
// can be clobbered
bool overflow(uint64_t *A, size_t n) {
 // All elements of A are nonnegative
 A[n] = UINT64_MAX;
 A[n+1] = 1; // or any positive number
 size_t i = 0;
 uint64_t sum = A[0];
 while (sum >= A[i]) {
 sum += A[++i];
 }
 return (i < n);
}

After

Sentinel

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Loop Fusion

The idea of loop fusion — also called jamming — is to
combine multiple loops over the same index range into a
single loop body, thereby saving the overhead of loop
control.

for (int i = 0; i < n; ++i) {
 C[i] = (A[i] <= B[i]) ? A[i] : B[i];
}

for (int i = 0; i < n; ++i) {
 D[i] = (A[i] <= B[i]) ? B[i] : A[i];
}

for (int i = 0; i < n; ++i) {
 C[i] = (A[i] <= B[i]) ? A[i] : B[i];
 D[i] = (A[i] <= B[i]) ? B[i] : A[i];
}

48

Before

After

Ternary operator
for if-else.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Eliminating Wasted Iterations

The idea of eliminating wasted iterations is to modify loop
bounds to avoid executing loop iterations over essentially
empty loop bodies.

for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 if (i > j) {
 int temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
 }
}

for (int i = 1; i < n; ++i) {
 for (int j = 0; j < i; ++j) {
 int temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

49

Before

After

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

FUNCTIONS

50

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Inlining

The idea of inlining is to avoid the overhead of a function call by
replacing a call to the function with the body of the function itself.

double square(double x) {
 return x*x;
}

double sum_of_squares(double *A, int n) {
 double sum = 0.0;
 for (int i = 0; i < n; ++i) {
 sum += square(A[i]);
 }
 return sum;
}

double sum_of_squares(double *A, int n) {
 double sum = 0.0;
 for (int i = 0; i < n; ++i) {
 double temp = A[i];
 sum += temp*temp;
 }
 return sum;
}

51

Before

After

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Inlining (2)

inline double square(double x) {
 return x*x;
}

double sum_of_squares(double *A, int n) {
 double sum = 0.0;
 for (int i = 0; i < n; ++i)
 sum += square(A[i]);
 return sum;
}

Inlined functions can be just as efficient as macros, and they
are safer to use and better structured.

52

Ask the compiler
to inline for you.

The idea of inlining is to avoid the overhead of a function call by
replacing a call to the function with the body of the function itself.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Tail-Recursion Elimination
Tail-recursion elimination removes the overhead of a recursive call
that occurs as the last step of a function. The call is replaced with
a branch to the top of the function, and the storage for the local
variables of the function is reused by the erstwhile recursive call.

void quicksort(int *A, int n) {
 if (n > 1) {
 int r = partition(A, n);
 quicksort (A, r);
 quicksort (A + r + 1, n - r - 1);
 }
} void quicksort(int *A, int n) {

 while (n > 1) {
 int r = partition(A, n);
 quicksort (A, r);
 A += r + 1;
 n -= r + 1;
 }
}

53

Before

After

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Coarsening Recursion

The idea of coarsening recursion is to increase the size of the
base case and handle it with more efficient code that avoids
function-call overhead.
void quicksort(int *A, int n) {
 while (n > 1) {
 int r = partition(A, n);
 quicksort (A, r);
 A += r + 1;
 n -= r + 1;
 }
}

#define THRESHOLD 64
void quicksort(int *A, int n) {
 while (n > THRESHOLD) {
 int r = partition(A, n);
 quicksort (A, r);
 A += r + 1;
 n -= r + 1;
 }
 // insertion sort for small arrays
 for (int j = 1; j < n; ++j) {
 int key = A[j];
 int i = j - 1;
 while (i >= 0 && A[i] > key) {
 A[i+1] = A[i];
 --i;
 }
 A[i+1] = key;
 }
}

54

Before After

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

SUMMARY

55

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

New Bentley Rules

Data structures
● Packing and encoding
● Augmentation
● Caching
● Precomputation
● Compile-time initialization
● Sparsity

Loops
● Loop unrolling
● Hoisting
● Sentinels
● Loop fusion
● Eliminating wasted iterations

Logic
● Constant folding and propagation
● Common-subexpression elimination
● Algebraic identities
● Creating a fast path
● Short-circuiting
● Ordering tests
● Combining tests

Functions
● Inlining
● Tail-recursion elimination
● Coarsening recursion

56

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Closing Advice

● Avoid premature optimization. First, get correct working code.
Then optimize, preserving correctness by regression testing.

● Reducing the work of a program does not necessarily decrease its
running time, but it is a good heuristic.

● Many optimizations involve tradeoffs. Use a profiler to see what
code needs to be optimized. (See Homework 2.)

● The compiler automates many low-level optimizations, but not all.
We will see how to look at the compiler output in upcoming lectures.

If you find interesting examples of work
optimization, please let us know!

57

	Lecture 2 �Bentley Rules for Optimizing Work
	Work
	Reducing Work
	Bentley Rules for Optimizing Work
	Jon Louis Bentley
	New Bentley Rules
	Data Structures
	Packing and Encoding
	Packing and Encoding (2)
	Augmentation
	Caching
	Precomputation
	Step 1: Pascal’s Triangle
	Step 2: Precomputing Pascal
	Compile-Time Initialization
	Compile-Time Initialization (2)
	Compile-Time Initialization (3)
	Sparsity
	Sparsity
	Sparsity (2)
	Sparsity (3)
	Sparsity (3)
	Sparsity (4)
	Logic
	Constant Folding and Propagation
	Common-Subexpression Elimination
	Common-Subexpression Elimination
	Algebraic Identities
	Algebraic Identities
	Creating a Fast Path
	Creating a Fast Path
	Creating a Fast Path
	Short-Circuiting
	Short-Circuiting
	Ordering Tests
	Combining Tests
	Combining Tests (2)
	Loops
	Why Loops?
	What Happens When a Loop Runs?
	Loop Unrolling
	Full Loop Unrolling
	Partial Loop Unrolling
	Hoisting
	Hoisting
	Sentinels
	Sentinels
	Loop Fusion
	Eliminating Wasted Iterations
	Functions
	Inlining
	Inlining (2)
	Tail-Recursion Elimination
	Coarsening Recursion
	Summary
	New Bentley Rules
	Closing Advice

