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WHY SOFTWARE PERFORMANCE 
ENGINEERING?
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Is Performance Important?

∙ Correctness
∙ Functionality

∙ Security

What software properties are more important than performance?
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Analogy for Performance
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Is Performance Important?

∙ Compatibility
∙ Correctness
∙ Clarity
∙ Debuggability

∙ Functionality
∙ Maintainability
∙ Modularity
∙ Portability

∙ Reliability
∙ Robustness
∙ Security
∙ Usability

Performance is the 
currency of computing.  
You can often “buy” 
needed properties with 
performance.

… and more.

If programmers are willing 
to sacrifice performance 
for these properties, then 
why study performance?

What software properties are more important than performance?
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A BRIEF HISTORY OF 
PERFORMANCE ENGINEERING

10



© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Computer Programming in the Early Days

IBM System/360

Launched: 1964
Clock rate: 33 KHz
Data path: 32 bits
Memory: 524 Kbytes
Cost: $250,000

Apple II

Launched: 1977
Clock rate: 1 MHz
Data path: 8 bits
Memory: 48 Kbytes
Cost: $1,395

Long ago, software performance engineering was 
common, because machine resources were limited.

Many applications strained machine resources.
∙ Programs had to be planned around the machine.
∙Many programs would not “fit” without intense performance engineering.

DEC PDP-11

Launched: 1970
Clock rate: 1.25 MHz
Data path: 16 bits
Memory: 56 Kbytes
Cost: $20,000

Performance Engineering Ruled!

11
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Technology Scaling from 70’s to 2004
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Advances in Hardware

Apple II

Launched: 1977
Clock rate: 1 MHz
Data path: 8 bits
Memory: 48 KB
Cost: $1,395

Power Macintosh G4

Launched: 2000
Clock rate: 400 MHz
Data path: 32 bits
Memory: 64 MB
Cost: $1,599

Power Macintosh G5

Launched: 2004
Clock rate: 1.8 GHz
Data path: 64 bits
Memory: 256 MB
Cost: $1,499

Apple computers with similar prices from 1977 to 2004

14
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Lessons Learned in the Beginning of this Era

More computing sins are committed 
in the name of efficiency (without 

necessarily achieving it) than for any 
other single reason — including 

blind stupidity. [W79]

William A. Wulf
15
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Lessons Learned in the Beginning of this Era

The First Rule of Program 
Optimization: Don’t do it. 

The Second Rule of Program 
Optimization — For experts only: 

Don’t do it yet. [J88]

Michael A. Jackson

16
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Lessons Learned in the Beginning of this Era

Premature optimization is the 
root of all evil. [K79]

Donald E. Knuth
17
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Until 2004

Moore’s Law and the scaling of clock frequency
   = printing press for the currency of performance.

Performance Engineering Ruled!

18
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Power Density

Source: Patrick Gelsinger, Intel Developer’s Forum, Intel Corporation, 2004.

The growth of power density, as seen in 2004, if the 
scaling of clock frequency had continued its trend of 
25%-30% increase per year.

20
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Vendor Solution: Multicore

∙ To scale performance, processor manufacturers put many 
processing cores on the microprocessor chip. 
∙ Each generation of Moore’s Law potentially doubles the 

number of cores.

Intel Core i7 3960X 
(Sandy Bridge E), 2011
• 6 cores
• 3.3 GHz
• 15-MB L3 cache

21
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Performance Is No Longer Free

Moore’s Law continued to 
increase computer performance.

But now that performance was 
available in the form of 
multicore processors with 
complex cache hierarchies, wide 
vector units, GPU’s, FPGA’s, etc.

Generally, software must be 
adapted to utilize this hardware 
efficiently!

2011 Intel 
Skylake 

processor

2008 
NVIDIA 
GT200 
GPU

23
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Bug reports for Mozilla “Core” Commit messages for MySQL
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And Now, Moore’s Law Is Over!

26
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Where Are We Now?

27

 Intel achieved 14 nanometers in 2014  
Doubling every two years, according to Moore’s Law, means 

that Intel should have achieved 
 10 nanometers in 2016, 
 7 nanometers in 2018,
 5 nanometers in 2020.

 But Intel did not release 10 nanometers until 2019! 
 It took 5 years for what historically had taken only 2 years

Semiconductor technology will no longer give 
applications free performance.
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Why Must the Party End?

28
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Darn That Physics!
• It’s implausible that semiconductor technologists can make 

wires thinner than atoms, which are at most a few 
angstroms across.

• The silicon lattice constant is 0.543 nanometers = 5.43 
angstroms. 

silicon
lattice

5.43 angstroms

• Technology roadmaps see an end to transistor scaling 
around 5 nanometers.  We’re almost there!

Image by Pieter Kuiper, Wikipedia Commons.
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The Printing Press Is Grinding to a Halt

30
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Performance Engineering Redux

31

 A modern multicore desktop processor contains
 parallel-processing cores
 vector units
 caches
 instruction prefetchers
 GPU’s
 hyperthreading
 dynamic frequency scaling 
 …

 These features can be challenging to exploit
2019 Intel 10nm processor

In this class you will learn the principles 
and practice of writing fast code.
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CASE STUDY
MATRIX MULTIPLICATION

32



© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Square-Matrix Multiplication

c11 c12 ⋯ c1n

c21 c22 ⋯ c2n

⋮ ⋮ ⋱ ⋮
cn1 cn2 ⋯ cnn

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

b11 b12 ⋯ b1n

b21 b22 ⋯ b2n

⋮ ⋮ ⋱ ⋮
bn1 bn2 ⋯ bnn

= ∙

C A B

cij = ∑
k = 1

n

aik bkj

Assume for simplicity that n = 2k.
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AWS c4.8xlarge Machine Specs
Feature Specification
Microarchitecture Haswell (Intel Xeon E5-2666 v3)
Clock frequency 2.9 GHz
Processor chips 2
Processing cores  9 per processor chip
Hyperthreading 2 way

Floating-point unit 8 double-precision operations, including 
fused-multiply-add, per core per cycle 

Cache-line size 64 B
L1-icache 32 KB private 8-way set associative
L1-dcache 32 KB private 8-way set associative
L2-cache 256 KB private 8-way set associative
L3-cache (LLC) 25 MB shared 20-way set associative
DRAM 60 GB

Peak = (2.9 × 109) × 2 × 9 × 16 = 836 GFLOPS
34
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Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
      for row in xrange(n)]
     for col in xrange(n)] 
B = [[random.random()
      for row in xrange(n)]
     for col in xrange(n)] 
C = [[0 for row in xrange(n)]
     for col in xrange(n)] 

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)
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Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
      for row in xrange(n)]
     for col in xrange(n)] 
B = [[random.random()
      for row in xrange(n)]
     for col in xrange(n)] 
C = [[0 for row in xrange(n)]
     for col in xrange(n)] 

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Running time:
≈ 6 microseconds?
≈ 6 milliseconds?
≈ 6 seconds?
≈ 6 hours?
≈ 6 days?
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Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
      for row in xrange(n)]
     for col in xrange(n)] 
B = [[random.random()
      for row in xrange(n)]
     for col in xrange(n)] 
C = [[0 for row in xrange(n)]
     for col in xrange(n)] 

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Running time:
= 21042 seconds
≈ 6 hours

Is this fast?

Should we expect 
more from our 
machine?
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import sys, random
from time import *

n = 4096

A = [[random.random()
      for row in xrange(n)]
     for col in xrange(n)] 
B = [[random.random()
      for row in xrange(n)]
     for col in xrange(n)] 
C = [[0 for row in xrange(n)]
     for col in xrange(n)] 

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Version 1: Nested Loops in Python
Running time
= 21042 seconds
≈ 6 hours

Is this fast?

Back-of-the-envelope calculation

2n3 = 2(212)3 = 237 floating-point operations
Running time = 21042 seconds
∴ Python gets 237/21042 ≈ 6.25 MFLOPS
Peak ≈ 836 GFLOPS
Python gets ≈ 0.00075% of peak
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Version 2: Java
import java.util.Random;

public class mm_java {
  static int n = 4096;
  static double[][] A = new double[n][n];
  static double[][] B = new double[n][n];
  static double[][] C = new double[n][n];

  public static void main(String[] args) {
    Random r = new Random();

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
A[i][j] = r.nextDouble();
B[i][j] = r.nextDouble();
C[i][j] = 0;

}
}

    long start = System.nanoTime();

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

    long stop = System.nanoTime();

double tdiff = (stop - start) * 1e-9;
    System.out.println(tdiff);
}

}

 

 

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}                               

Running time = 2,738 seconds
 ≈ 46 minutes
… about 8.8× faster than Python.
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Version 3: C
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>

#define n 4096
double A[n][n];
double B[n][n];
double C[n][n];

float tdiff(struct timeval *start,
struct timeval *end) {

return (end->tv_sec-start->tv_sec) +
1e-6*(end->tv_usec-start->tv_usec);

}

int main(int argc, const char *argv[]) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
      A[i][j] = (double)rand() / (double)RAND_MAX;
      B[i][j] = (double)rand() / (double)RAND_MAX;

C[i][j] = 0;
}

}

  struct timeval start, end;
  gettimeofday(&start, NULL);

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

for (int k = 0; k < n; ++k) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

  gettimeofday(&end, NULL);
printf("%0.6f\n", tdiff(&start, &end));

  return 0;
}

 

 

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

Using the Clang/LLVM 5.0 compiler
Running time = 1,156 seconds
 ≈ 19 minutes,
or about 2× faster than Java and
about 18× faster than Python.
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Where We Stand So Far

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.007 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.119 0.014

41
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Where We Stand So Far

Why is Python so slow and C so fast?
∙ Python is interpreted.
∙ C is compiled directly to machine code.
∙ Java is compiled to byte-code, which is then 

interpreted and just-in-time (JIT) compiled to 
machine code.

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.007 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.119 0.014
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Interpreters are versatile, but slow

43

 The interpreter reads, interprets, and performs each program statement 
and updates the machine state.

 Interpreters can easily support high-level programming features — such as 
dynamic code alteration — at the cost of performance.

Read next 
statement

Interpret
statement

Perform
statement

Update 
state

Interpreter 
loop
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JIT Compilation

44

 JIT compilers can recover some of the performance lost by interpretation

 When code is first executed, it is interpreted

 The runtime system keeps track of how often the various pieces of code 
are executed

 Whenever some piece of code executes sufficiently frequently, it gets 
compiled to machine code in real time

 Future executions of that code use the more-efficient compiled version



© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Where We Stand So Far

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.007 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.119 0.014
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Loop Order

C[i][j] += A[i][k] * B[k][j];
}

}
}

 

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {

We can change the order of the loops in this program 
without affecting its correctness.

46
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Loop Order

C[i][j] += A[i][k] * B[k][j];
}

}
} 

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {

Does the order of loops matter for performance?

We can change the order of the loops in this program 
without affecting its correctness.
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Performance of Different Orders

 Loop order affects running 
time by a factor of 18!

What’s going on?

Loop order (outer 
to inner)

Running 
time (s)

i, j, k 1155.77
i, k, j 177.68
j, i, k 1080.61
j, k, i 3056.63
k, i, j 179.21
k, j, i 3032.82
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Hardware Caches

49

 Each processor reads and writes main memory in contiguous blocks, called 
cache lines.
 Previously accessed cache lines are stored in a smaller memory, called a cache, 

that sits near the processor.
 Cache hits — accesses to data in cache — are fast.
 Cache misses — accesses to data not in cache — are slow.

P

cache

memory

BM/B
cache lines

processor
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Performance of Different Orders

Loop order (outer 
to inner)

Running 
time (s)

Last-level-cache 
miss rate

i, j, k 1155.77 7.7%
i, k, j 177.68 1.0%
j, i, k 1080.61 8.6%
j, k, i 3056.63 15.4%
k, i, j 179.21 1.0%
k, j, i 3032.82 15.4%

$ valgrind --tool=cachegrind ./mm

We can measure the effect of different access patterns using 
the cachegrind cache simulator:
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Version 4: Interchange Loops

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093
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Version 4: Interchange Loops

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

What other simple changes we can try?
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Compiler Optimization

clang provides a collection of optimization switches.  
You can specify a switch to the compiler to ask it to optimize.

Opt. level Meaning Time (s)

-O0 Do not optimize 177.54

-O1 Optimize 66.24

-O2 Optimize even more 54.63

-O3 Optimize yet more 55.58

clang also supports optimization levels for special purposes, 
such as –Os, which aims to limit code size, and –Og, for debugging purposes
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Version 5: Optimization Flags

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology, 
we can achieve 0.3% of the peak performance of the machine.
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Version 5: Optimization Flags

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology, 
we can achieve 0.3% of the peak performance of the machine.

Where can we get more performance?
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Multicore Parallelism

We’re running on just 1 of the 18 parallel-processing cores 
on this system.  Let’s use them all!

Intel Haswell E5:
9 cores per chip

The AWS test machine 
has 2 of these chips.

60



© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

for (int i = 0; i < n; ++i)
  for (int k = 0; k < n; ++k)
    for (int j = 0; j < n; ++j)
      C[i][j] += A[i][k] * B[k][j]; 

Parallel Loops

A cilk_for loop enables all iterations of the loop to execute in parallel.

cilk_for (int i = 0; i < n; ++i)
  for (int k = 0; k < n; ++k)
    for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

cilk_for (int i = 0; i < n; ++i)
  for (int k = 0; k < n; ++k)
    cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Both of these loops 
can be parallelized.

Which parallel version works best?
• parallelize just the i loop,
• parallelize just the j loop, or
• parallelize both the i and j loops.
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cilk_for (int i = 0; i < n; ++i)
  for (int k = 0; k < n; ++k)
    for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

cilk_for (int i = 0; i < n; ++i)
  for (int k = 0; k < n; ++k)
    cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

for (int i = 0; i < n; ++i)
  for (int k = 0; k < n; ++k)
    cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Experimenting with Parallel Loops

Running time: 3.18s

Running time: 531.71s 

Running time: 10.64s 

Parallel i loop

Parallel i and j loops

Parallel j loop
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Version 6: Parallel Loops

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Parallelizing the i loop yields a speedup of almost 18× on 18 cores!  
• Disclaimer: It’s rarely this easy to parallelize code effectively. Most code 

requires far more creativity to achieve a good speedup.
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Version 6: Parallel Loops

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Using parallel loops gets us almost 18× speedup on 18 cores!  
(Disclaimer: Not all code is so easy to parallelize effectively.)

Why are we still getting less than 5% of peak?
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Hardware Caches, Revisited

65

 [KEY IDEA] Restructure the computation to reuse data in the 
cache as much as possible.
 Cache misses are slow, and cache hits are fast.
 Try to make the most of the cache by reusing the data that’s already 

there.

P

cache

memory

BM/B
cache lines

processor
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D&C Matrix Multiplication
[KEY IDEA] For matrix multiplication, a recursive, parallel, divide-
and-conquer algorithm uses caches almost optimally.

C00 C01

C10 C11

=

IDEA: Divide the matrices into (n/2)×(n/2) submatrices.

·
A00 A01

A10 A11

B00 B01

B10 B11
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D&C Matrix Multiplication
[KEY IDEA] For matrix multiplication, a recursive, parallel, divide-
and-conquer algorithm uses caches almost optimally.

C00 C01

C10 C11

= ·
A00 A01

A10 A11

= +
A00B00 A00B01

A10B00 A10B01

A01B10 A01B11

A11B10 A11B11

B00 B01

B10 B11

1. Compute C00 += A00B00; C01 += A00B01; C10 += A10B00; and 
C11 += A10B01 recursively in parallel.

2. Compute C00 += A01B10; C01 += A01B11; C10 += A11B10; and 
C11 += A11B11 recursively in parallel.
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Recursive Parallel Matrix Multiply
void mm_dac(double *restrict C, int n_C, 
            double *restrict A, int n_A, 
            double *restrict B, int n_B,
            int n)
{ // C += A * B  
  assert((n & (-n)) == n);                    
  if (n <= 1) {                       
    *C += *A * *B;
  } else {                                     
#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2)) 
    cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2); 
    cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2); 
    cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2); 
               mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2); 
    cilk_sync;
    cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2); 
    cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2); 
    cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2); 
               mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2); 
    cilk_sync;
  }
}
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Version 7: Parallel Divide-and-Conquer

Implementation
Cache references 

× 106
Cache references 

× 106
L1-d cache misses 

× 106

Parallel loops 104,090 17,220 8,600

Parallel divide-and-conquer 58,230 9,407 64

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646
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Lane 0 Lane 1 Lane 2 Lane 3

Word 0 Word 1 Word 2 Word 3

Vector Hardware

Vector Load/Store Unit

ALU

Vector Registers

In
st

ru
ct

io
n 

de
co

de
 

an
d 

se
qu

en
ci

ng
Memory and caches

ALU ALU ALU

Modern microprocessors incorporate vector hardware to process 
data in single-instruction stream, multiple-data stream (SIMD) fashion

Each vector register 
holds multiple words 

of data.

Parallel vector lanes operate 
synchronously on the words 

in a vector register.
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Compiler Vectorization

$ clang -O3 -std=c99 mm.c -o mm –Rpass=vector
mm.c:42:7: remark: vectorized loop (vectorization width: 2, 
interleaved count: 2) [-Rpass=loop-vectorize]

for (int j = 0; j < n; ++j) {
      ^

 Clang/LLVM uses vector instructions automatically when compiling at 
optimization level -O2 or higher

 Clang/LLVM can be induced to produce a vectorization report as follows:

 Many machines don’t support the newest set of vector instructions, 
however, so the compiler uses vector instructions conservatively by default.
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Vectorization Flags

72

 Programmers can direct the compiler to use modern vector instructions 
using compiler flags, such as,
 -mavx: Use Intel AVX vector instructions
 -mavx2: Use Intel AVX2 vector instructions
 -mfma: Use fused multiply-add vector instructions
 -march=<string>: Use whatever instructions are available on the specified architecture
 -march=native: Use whatever instructions are available on the architecture of the 

machine doing compilation

 Due to restrictions on floating-point arithmetic, additional flags (e.g. –
ffast-math) might be needed for vectorization flags to have an effect

 Also, using AVX instructions slows down the microprocessor clock speed 
by about 20%!
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Version 8: Compiler Vectorization

Using the flags –march=native –ffast-math nearly doubles 
the program’s performance!

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent 
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

Can we be smarter than the compiler?
73



© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

AVX Intrinsic Instructions

 Intel provides C-style functions, called intrinsic instructions, that provide 
direct access to hardware vector operations:

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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Plus More Optimizations

75

We can apply several more insights and performance-
engineering tricks to make this code run faster, including:
 Preprocessing
Matrix transposition
Data alignment
Memory-management optimizations
 A clever algorithm for the base case that uses AVX intrinsic instructions 

explicitly
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Plus Performance Engineering
Think, code,

run, run, run…

…to test and measure many 
different implementations
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Version 9: AVX Intrinsics

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

8 + compiler vectorization 0.70 2.35 30,272 196.341 23.486

9 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677
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Version 10: Final Reckoning

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

9 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677

10 Intel MKL 0.41 0.97 51,497 335.217 40.098

Our Version 9 is competitive with Intel’s professionally 
engineered Math Kernel Library (MKL)!
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Performance Engineering

Galopagos 
Tortoise
0.5 k/h

∙ You won’t generally see the 
magnitude of performance 
improvement we obtained for 
matrix multiplication.
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Performance Engineering

53,292×

∙ You won’t generally see the 
magnitude of performance 
improvement we obtained for 
matrix multiplication.

Galopagos 
Tortoise
0.5 k/h

Escape
Velocity
11 k/s
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Performance Engineering

∙ But this class will teach you 
how to print the currency of 
performance all by yourself.

53,292×

∙ You won’t generally see the 
magnitude of performance 
improvement we obtained for 
matrix multiplication.

Galopagos 
Tortoise
0.5 k/h

Escape
Velocity
11 k/s
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SPEED
LIMIT∞

PER ORDER OF 6.106

Lecturer:  Xuhao Chen 
Slack:  xxx.slack.com
Canvas: canvas.mit.edu/courses/16631

 Read Course Info
 HW0 — due tonight!
 Attend ANY recitation TOMORROW:

10am-12pm @ 26-322
1-3pm   @ 34-301 or  34-302
3-5pm   @ 34-302 or  34-304 
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