
Performance
Engineering of
Software Systems

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

Lecturer: Xuhao Chen
Slack: xxx.slack.com
Canvas: canvas.mit.edu/courses/16631

 Read Course Info
 HW0 — due tonight!
 Attend ANY recitation TOMORROW:

10am-12pm @ 26-322
1-3pm @ 34-301 or 34-302
3-5pm @ 34-302 or 34-304

Performance
Engineering of
Software Systems

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

LECTURE 1
Introduction &
Matrix Multiplication
Xuhao Chen

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

WHY SOFTWARE PERFORMANCE
ENGINEERING?

3

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Is Performance Important?

∙ Correctness
∙ Functionality

∙ Security

What software properties are more important than performance?

4

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Is Performance Important?

∙ Compatibility
∙ Correctness
∙ Clarity
∙ Debuggability

∙ Functionality
∙ Maintainability
∙ Modularity
∙ Portability

∙ Reliability
∙ Robustness
∙ Security
∙ Usability

… and more.

What software properties are more important than performance?

5

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Is Performance Important?

∙ Compatibility
∙ Correctness
∙ Clarity
∙ Debuggability

∙ Functionality
∙ Maintainability
∙ Modularity
∙ Portability

∙ Reliability
∙ Robustness
∙ Security
∙ Usability

… and more.

If programmers are willing
to sacrifice performance
for these properties, then
why study performance?

What software properties are more important than performance?

6

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Is Performance Important?

∙ Compatibility
∙ Correctness
∙ Clarity
∙ Debuggability

∙ Functionality
∙ Maintainability
∙ Modularity
∙ Portability

∙ Reliability
∙ Robustness
∙ Security
∙ Usability

… and more.

If programmers are willing
to sacrifice performance
for these properties, then
why study performance?

What software properties are more important than performance?

7

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Analogy for Performance

8

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Is Performance Important?

∙ Compatibility
∙ Correctness
∙ Clarity
∙ Debuggability

∙ Functionality
∙ Maintainability
∙ Modularity
∙ Portability

∙ Reliability
∙ Robustness
∙ Security
∙ Usability

Performance is the
currency of computing.
You can often “buy”
needed properties with
performance.

… and more.

If programmers are willing
to sacrifice performance
for these properties, then
why study performance?

What software properties are more important than performance?

9

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

A BRIEF HISTORY OF
PERFORMANCE ENGINEERING

10

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Computer Programming in the Early Days

IBM System/360

Launched: 1964
Clock rate: 33 KHz
Data path: 32 bits
Memory: 524 Kbytes
Cost: $250,000

Apple II

Launched: 1977
Clock rate: 1 MHz
Data path: 8 bits
Memory: 48 Kbytes
Cost: $1,395

Long ago, software performance engineering was
common, because machine resources were limited.

Many applications strained machine resources.
∙ Programs had to be planned around the machine.
∙Many programs would not “fit” without intense performance engineering.

DEC PDP-11

Launched: 1970
Clock rate: 1.25 MHz
Data path: 16 bits
Memory: 56 Kbytes
Cost: $20,000

Performance Engineering Ruled!

11

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Technology Scaling from 70’s to 2004

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

“Moore’s Law”
2× every 2 years

Processor data from Stanford’s CPU DB [DKM12].
Year

Normalized
transistor count

12

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling from 70’s to 2004

Clock speed (MHz)

Year

“Dennard scaling”

Processor data from Stanford’s CPU DB [DKM12].

Normalized
transistor count

13

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Advances in Hardware

Apple II

Launched: 1977
Clock rate: 1 MHz
Data path: 8 bits
Memory: 48 KB
Cost: $1,395

Power Macintosh G4

Launched: 2000
Clock rate: 400 MHz
Data path: 32 bits
Memory: 64 MB
Cost: $1,599

Power Macintosh G5

Launched: 2004
Clock rate: 1.8 GHz
Data path: 64 bits
Memory: 256 MB
Cost: $1,499

Apple computers with similar prices from 1977 to 2004

14

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Lessons Learned in the Beginning of this Era

More computing sins are committed
in the name of efficiency (without

necessarily achieving it) than for any
other single reason — including

blind stupidity. [W79]

William A. Wulf
15

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Lessons Learned in the Beginning of this Era

The First Rule of Program
Optimization: Don’t do it.

The Second Rule of Program
Optimization — For experts only:

Don’t do it yet. [J88]

Michael A. Jackson

16

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Lessons Learned in the Beginning of this Era

Premature optimization is the
root of all evil. [K79]

Donald E. Knuth
17

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Until 2004

Moore’s Law and the scaling of clock frequency
 = printing press for the currency of performance.

Performance Engineering Ruled!

18

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling After 2004

Clock speed (MHz)

Year

Normalized
transistor count

Processor data from Stanford’s CPU DB [DKM12].
19

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Power Density

Source: Patrick Gelsinger, Intel Developer’s Forum, Intel Corporation, 2004.

The growth of power density, as seen in 2004, if the
scaling of clock frequency had continued its trend of
25%-30% increase per year.

20

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vendor Solution: Multicore

∙ To scale performance, processor manufacturers put many
processing cores on the microprocessor chip.
∙ Each generation of Moore’s Law potentially doubles the

number of cores.

Intel Core i7 3960X
(Sandy Bridge E), 2011
• 6 cores
• 3.3 GHz
• 15-MB L3 cache

21

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling

Processor cores

Year

Normalized
transistor count

Clock speed (MHz)

Processor data from Stanford’s CPU DB [DKM12].
22

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance Is No Longer Free

Moore’s Law continued to
increase computer performance.

But now that performance was
available in the form of
multicore processors with
complex cache hierarchies, wide
vector units, GPU’s, FPGA’s, etc.

Generally, software must be
adapted to utilize this hardware
efficiently!

2011 Intel
Skylake

processor

2008
NVIDIA
GT200
GPU

23

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Bug reports for Mozilla “Core” Commit messages for MySQL

Commit messages for OpenSSL Bug reports for the Eclipse IDE

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1999 2004 2009 2014
0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%

1999 2004 2009 2014

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

1999 2004 2009 2014
0.00%
0.50%
1.00%
1.50%
2.00%
2.50%
3.00%
3.50%
4.00%
4.50%

1999 2004 2009 2014

Software Bugs Mentioning “Performance”

24

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

2001 2003 2005 2007 2009 2011 2013
0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%

2001 2006 2011

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

2001 2006 2011
0.00%
0.10%
0.20%
0.30%
0.40%
0.50%
0.60%
0.70%

2001 2006 2011

Mentioning “performance” Mentioning “optimization”

Mentioning “parallel” Mentioning “concurrency”

Software Developer Jobs

Source: Monster.com

25

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

And Now, Moore’s Law Is Over!

26

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Where Are We Now?

27

 Intel achieved 14 nanometers in 2014
Doubling every two years, according to Moore’s Law, means

that Intel should have achieved
 10 nanometers in 2016,
 7 nanometers in 2018,
 5 nanometers in 2020.

 But Intel did not release 10 nanometers until 2019!
 It took 5 years for what historically had taken only 2 years

Semiconductor technology will no longer give
applications free performance.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Why Must the Party End?

28

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Darn That Physics!
• It’s implausible that semiconductor technologists can make

wires thinner than atoms, which are at most a few
angstroms across.

• The silicon lattice constant is 0.543 nanometers = 5.43
angstroms.

silicon
lattice

5.43 angstroms

• Technology roadmaps see an end to transistor scaling
around 5 nanometers. We’re almost there!

Image by Pieter Kuiper, Wikipedia Commons.

29

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

The Printing Press Is Grinding to a Halt

30

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance Engineering Redux

31

 A modern multicore desktop processor contains
 parallel-processing cores
 vector units
 caches
 instruction prefetchers
 GPU’s
 hyperthreading
 dynamic frequency scaling
 …

 These features can be challenging to exploit
2019 Intel 10nm processor

In this class you will learn the principles
and practice of writing fast code.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

CASE STUDY
MATRIX MULTIPLICATION

32

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Square-Matrix Multiplication

c11 c12 ⋯ c1n

c21 c22 ⋯ c2n

⋮ ⋮ ⋱ ⋮
cn1 cn2 ⋯ cnn

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

b11 b12 ⋯ b1n

b21 b22 ⋯ b2n

⋮ ⋮ ⋱ ⋮
bn1 bn2 ⋯ bnn

= ∙

C A B

cij = ∑
k = 1

n

aik bkj

Assume for simplicity that n = 2k.

33

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

AWS c4.8xlarge Machine Specs
Feature Specification
Microarchitecture Haswell (Intel Xeon E5-2666 v3)
Clock frequency 2.9 GHz
Processor chips 2
Processing cores 9 per processor chip
Hyperthreading 2 way

Floating-point unit 8 double-precision operations, including
fused-multiply-add, per core per cycle

Cache-line size 64 B
L1-icache 32 KB private 8-way set associative
L1-dcache 32 KB private 8-way set associative
L2-cache 256 KB private 8-way set associative
L3-cache (LLC) 25 MB shared 20-way set associative
DRAM 60 GB

Peak = (2.9 × 109) × 2 × 9 × 16 = 836 GFLOPS
34

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
B = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
C = [[0 for row in xrange(n)]
 for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

35

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
B = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
C = [[0 for row in xrange(n)]
 for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Running time:
≈ 6 microseconds?
≈ 6 milliseconds?
≈ 6 seconds?
≈ 6 hours?
≈ 6 days?

36

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
B = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
C = [[0 for row in xrange(n)]
 for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Running time:
= 21042 seconds
≈ 6 hours

Is this fast?

Should we expect
more from our
machine?

37

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

import sys, random
from time import *

n = 4096

A = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
B = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
C = [[0 for row in xrange(n)]
 for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Version 1: Nested Loops in Python
Running time
= 21042 seconds
≈ 6 hours

Is this fast?

Back-of-the-envelope calculation

2n3 = 2(212)3 = 237 floating-point operations
Running time = 21042 seconds
∴ Python gets 237/21042 ≈ 6.25 MFLOPS
Peak ≈ 836 GFLOPS
Python gets ≈ 0.00075% of peak

38

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 2: Java
import java.util.Random;

public class mm_java {
 static int n = 4096;
 static double[][] A = new double[n][n];
 static double[][] B = new double[n][n];
 static double[][] C = new double[n][n];

 public static void main(String[] args) {
 Random r = new Random();

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
A[i][j] = r.nextDouble();
B[i][j] = r.nextDouble();
C[i][j] = 0;

}
}

 long start = System.nanoTime();

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

 long stop = System.nanoTime();

double tdiff = (stop - start) * 1e-9;
 System.out.println(tdiff);
}

}

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}

Running time = 2,738 seconds
 ≈ 46 minutes
… about 8.8× faster than Python.

39

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 3: C
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>

#define n 4096
double A[n][n];
double B[n][n];
double C[n][n];

float tdiff(struct timeval *start,
struct timeval *end) {

return (end->tv_sec-start->tv_sec) +
1e-6*(end->tv_usec-start->tv_usec);

}

int main(int argc, const char *argv[]) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
 A[i][j] = (double)rand() / (double)RAND_MAX;
 B[i][j] = (double)rand() / (double)RAND_MAX;

C[i][j] = 0;
}

}

 struct timeval start, end;
 gettimeofday(&start, NULL);

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

for (int k = 0; k < n; ++k) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

 gettimeofday(&end, NULL);
printf("%0.6f\n", tdiff(&start, &end));

 return 0;
}

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

Using the Clang/LLVM 5.0 compiler
Running time = 1,156 seconds
 ≈ 19 minutes,
or about 2× faster than Java and
about 18× faster than Python.

40

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Where We Stand So Far

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.007 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.119 0.014

41

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Where We Stand So Far

Why is Python so slow and C so fast?
∙ Python is interpreted.
∙ C is compiled directly to machine code.
∙ Java is compiled to byte-code, which is then

interpreted and just-in-time (JIT) compiled to
machine code.

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.007 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.119 0.014

42

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Interpreters are versatile, but slow

43

 The interpreter reads, interprets, and performs each program statement
and updates the machine state.

 Interpreters can easily support high-level programming features — such as
dynamic code alteration — at the cost of performance.

Read next
statement

Interpret
statement

Perform
statement

Update
state

Interpreter
loop

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

JIT Compilation

44

 JIT compilers can recover some of the performance lost by interpretation

 When code is first executed, it is interpreted

 The runtime system keeps track of how often the various pieces of code
are executed

 Whenever some piece of code executes sufficiently frequently, it gets
compiled to machine code in real time

 Future executions of that code use the more-efficient compiled version

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Where We Stand So Far

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.007 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.119 0.014

45

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Loop Order

C[i][j] += A[i][k] * B[k][j];
}

}
}

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {

We can change the order of the loops in this program
without affecting its correctness.

46

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Loop Order

C[i][j] += A[i][k] * B[k][j];
}

}
}

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {

Does the order of loops matter for performance?

We can change the order of the loops in this program
without affecting its correctness.

47

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance of Different Orders

 Loop order affects running
time by a factor of 18!

What’s going on?

Loop order (outer
to inner)

Running
time (s)

i, j, k 1155.77
i, k, j 177.68
j, i, k 1080.61
j, k, i 3056.63
k, i, j 179.21
k, j, i 3032.82

48

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Hardware Caches

49

 Each processor reads and writes main memory in contiguous blocks, called
cache lines.
 Previously accessed cache lines are stored in a smaller memory, called a cache,

that sits near the processor.
 Cache hits — accesses to data in cache — are fast.
 Cache misses — accesses to data not in cache — are slow.

P

cache

memory

BM/B
cache lines

processor

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance of Different Orders

Loop order (outer
to inner)

Running
time (s)

Last-level-cache
miss rate

i, j, k 1155.77 7.7%
i, k, j 177.68 1.0%
j, i, k 1080.61 8.6%
j, k, i 3056.63 15.4%
k, i, j 179.21 1.0%
k, j, i 3032.82 15.4%

$ valgrind --tool=cachegrind ./mm

We can measure the effect of different access patterns using
the cachegrind cache simulator:

54

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 4: Interchange Loops

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

55

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 4: Interchange Loops

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

What other simple changes we can try?

56

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Compiler Optimization

clang provides a collection of optimization switches.
You can specify a switch to the compiler to ask it to optimize.

Opt. level Meaning Time (s)

-O0 Do not optimize 177.54

-O1 Optimize 66.24

-O2 Optimize even more 54.63

-O3 Optimize yet more 55.58

clang also supports optimization levels for special purposes,
such as –Os, which aims to limit code size, and –Og, for debugging purposes

57

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 5: Optimization Flags

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology,
we can achieve 0.3% of the peak performance of the machine.

58

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 5: Optimization Flags

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology,
we can achieve 0.3% of the peak performance of the machine.

Where can we get more performance?

59

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Multicore Parallelism

We’re running on just 1 of the 18 parallel-processing cores
on this system. Let’s use them all!

Intel Haswell E5:
9 cores per chip

The AWS test machine
has 2 of these chips.

60

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 for (int j = 0; j < n; ++j)
 C[i][j] += A[i][k] * B[k][j];

Parallel Loops

A cilk_for loop enables all iterations of the loop to execute in parallel.

cilk_for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

cilk_for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Both of these loops
can be parallelized.

Which parallel version works best?
• parallelize just the i loop,
• parallelize just the j loop, or
• parallelize both the i and j loops.

61

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

cilk_for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

cilk_for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Experimenting with Parallel Loops

Running time: 3.18s

Running time: 531.71s

Running time: 10.64s

Parallel i loop

Parallel i and j loops

Parallel j loop

62

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 6: Parallel Loops

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Parallelizing the i loop yields a speedup of almost 18× on 18 cores!
• Disclaimer: It’s rarely this easy to parallelize code effectively. Most code

requires far more creativity to achieve a good speedup.

63

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 6: Parallel Loops

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Using parallel loops gets us almost 18× speedup on 18 cores!
(Disclaimer: Not all code is so easy to parallelize effectively.)

Why are we still getting less than 5% of peak?

64

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Hardware Caches, Revisited

65

 [KEY IDEA] Restructure the computation to reuse data in the
cache as much as possible.
 Cache misses are slow, and cache hits are fast.
 Try to make the most of the cache by reusing the data that’s already

there.

P

cache

memory

BM/B
cache lines

processor

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

D&C Matrix Multiplication
[KEY IDEA] For matrix multiplication, a recursive, parallel, divide-
and-conquer algorithm uses caches almost optimally.

C00 C01

C10 C11

=

IDEA: Divide the matrices into (n/2)×(n/2) submatrices.

·
A00 A01

A10 A11

B00 B01

B10 B11

66

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

D&C Matrix Multiplication
[KEY IDEA] For matrix multiplication, a recursive, parallel, divide-
and-conquer algorithm uses caches almost optimally.

C00 C01

C10 C11

= ·
A00 A01

A10 A11

= +
A00B00 A00B01

A10B00 A10B01

A01B10 A01B11

A11B10 A11B11

B00 B01

B10 B11

1. Compute C00 += A00B00; C01 += A00B01; C10 += A10B00; and
C11 += A10B01 recursively in parallel.

2. Compute C00 += A01B10; C01 += A01B11; C10 += A11B10; and
C11 += A11B11 recursively in parallel.

67

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Recursive Parallel Matrix Multiply
void mm_dac(double *restrict C, int n_C,
 double *restrict A, int n_A,
 double *restrict B, int n_B,
 int n)
{ // C += A * B
 assert((n & (-n)) == n);
 if (n <= 1) {
 *C += *A * *B;
 } else {
#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
 cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);
 mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
 cilk_sync;
 cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);
 mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
 cilk_sync;
 }
}

68

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 7: Parallel Divide-and-Conquer

Implementation
Cache references

× 106
Cache references

× 106
L1-d cache misses

× 106

Parallel loops 104,090 17,220 8,600

Parallel divide-and-conquer 58,230 9,407 64

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

69

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Lane 0 Lane 1 Lane 2 Lane 3

Word 0 Word 1 Word 2 Word 3

Vector Hardware

Vector Load/Store Unit

ALU

Vector Registers

In
st

ru
ct

io
n

de
co

de

an
d

se
qu

en
ci

ng
Memory and caches

ALU ALU ALU

Modern microprocessors incorporate vector hardware to process
data in single-instruction stream, multiple-data stream (SIMD) fashion

Each vector register
holds multiple words

of data.

Parallel vector lanes operate
synchronously on the words

in a vector register.

70

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Compiler Vectorization

$ clang -O3 -std=c99 mm.c -o mm –Rpass=vector
mm.c:42:7: remark: vectorized loop (vectorization width: 2,
interleaved count: 2) [-Rpass=loop-vectorize]

for (int j = 0; j < n; ++j) {
 ^

 Clang/LLVM uses vector instructions automatically when compiling at
optimization level -O2 or higher

 Clang/LLVM can be induced to produce a vectorization report as follows:

 Many machines don’t support the newest set of vector instructions,
however, so the compiler uses vector instructions conservatively by default.

71

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Vectorization Flags

72

 Programmers can direct the compiler to use modern vector instructions
using compiler flags, such as,
 -mavx: Use Intel AVX vector instructions
 -mavx2: Use Intel AVX2 vector instructions
 -mfma: Use fused multiply-add vector instructions
 -march=<string>: Use whatever instructions are available on the specified architecture
 -march=native: Use whatever instructions are available on the architecture of the

machine doing compilation

 Due to restrictions on floating-point arithmetic, additional flags (e.g. –
ffast-math) might be needed for vectorization flags to have an effect

 Also, using AVX instructions slows down the microprocessor clock speed
by about 20%!

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 8: Compiler Vectorization

Using the flags –march=native –ffast-math nearly doubles
the program’s performance!

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

Can we be smarter than the compiler?
73

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

AVX Intrinsic Instructions

 Intel provides C-style functions, called intrinsic instructions, that provide
direct access to hardware vector operations:

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

74

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Plus More Optimizations

75

We can apply several more insights and performance-
engineering tricks to make this code run faster, including:
 Preprocessing
Matrix transposition
Data alignment
Memory-management optimizations
 A clever algorithm for the base case that uses AVX intrinsic instructions

explicitly

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Plus Performance Engineering
Think, code,

run, run, run…

…to test and measure many
different implementations

76

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 9: AVX Intrinsics

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

8 + compiler vectorization 0.70 2.35 30,272 196.341 23.486

9 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677

77

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Version 10: Final Reckoning

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

9 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677

10 Intel MKL 0.41 0.97 51,497 335.217 40.098

Our Version 9 is competitive with Intel’s professionally
engineered Math Kernel Library (MKL)!

78

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance Engineering

Galopagos
Tortoise
0.5 k/h

∙ You won’t generally see the
magnitude of performance
improvement we obtained for
matrix multiplication.

79

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance Engineering

53,292×

∙ You won’t generally see the
magnitude of performance
improvement we obtained for
matrix multiplication.

Galopagos
Tortoise
0.5 k/h

Escape
Velocity
11 k/s

80

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Performance Engineering

∙ But this class will teach you
how to print the currency of
performance all by yourself.

53,292×

∙ You won’t generally see the
magnitude of performance
improvement we obtained for
matrix multiplication.

Galopagos
Tortoise
0.5 k/h

Escape
Velocity
11 k/s

81

Performance
Engineering of
Software Systems

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞

PER ORDER OF 6.106

Lecturer: Xuhao Chen
Slack: xxx.slack.com
Canvas: canvas.mit.edu/courses/16631

 Read Course Info
 HW0 — due tonight!
 Attend ANY recitation TOMORROW:

10am-12pm @ 26-322
1-3pm @ 34-301 or 34-302
3-5pm @ 34-302 or 34-304

	Slide Number 1
	Lecture 1 �Introduction & �Matrix Multiplication
	Why Software Performance Engineering?
	Is Performance Important?
	Is Performance Important?
	Is Performance Important?
	Is Performance Important?
	Analogy for Performance
	Is Performance Important?
	A Brief History of Performance Engineering
	Computer Programming in the Early Days
	Technology Scaling from 70’s to 2004
	Technology Scaling from 70’s to 2004
	Advances in Hardware
	Lessons Learned in the Beginning of this Era
	Lessons Learned in the Beginning of this Era
	Lessons Learned in the Beginning of this Era
	Until 2004
	Technology Scaling After 2004
	Power Density
	Vendor Solution: Multicore
	Technology Scaling
	Performance Is No Longer Free
	Software Bugs Mentioning “Performance”
	Software Developer Jobs
	And Now, Moore’s Law Is Over!
	Where Are We Now?
	Why Must the Party End?
	Darn That Physics!
	The Printing Press Is Grinding to a Halt
	Performance Engineering Redux
	Case Study�Matrix Multiplication
	Square-Matrix Multiplication
	AWS c4.8xlarge Machine Specs
	Version 1: Nested Loops in Python
	Version 1: Nested Loops in Python
	Version 1: Nested Loops in Python
	Version 1: Nested Loops in Python
	Version 2: Java
	Version 3: C
	Where We Stand So Far
	Where We Stand So Far
	Interpreters are versatile, but slow
	JIT Compilation
	Where We Stand So Far
	Loop Order
	Loop Order
	Performance of Different Orders
	Hardware Caches
	Performance of Different Orders
	Version 4: Interchange Loops
	Version 4: Interchange Loops
	Compiler Optimization
	Version 5: Optimization Flags
	Version 5: Optimization Flags
	Multicore Parallelism
	Parallel Loops
	Experimenting with Parallel Loops
	Version 6: Parallel Loops
	Version 6: Parallel Loops
	Hardware Caches, Revisited
	D&C Matrix Multiplication
	D&C Matrix Multiplication
	Recursive Parallel Matrix Multiply
	Version 7: Parallel Divide-and-Conquer
	Vector Hardware
	Compiler Vectorization
	Vectorization Flags
	Version 8: Compiler Vectorization
	AVX Intrinsic Instructions
	Plus More Optimizations
	Plus Performance Engineering
	Version 9: AVX Intrinsics
	Version 10: Final Reckoning
	Performance Engineering
	Performance Engineering
	Performance Engineering
	Slide Number 82

