
Software Performance Engineering October 27, 2025
Michigan State University CSE 491
Xuhao Chen Handout 10

Project 3-A: GPU Render

Last Updated: October 29, 2025

In this project, you will write a parallel renderer in CUDA that draws colored circles. While this renderer
is very simple, parallelizing the renderer will require you to design and implement data structures that can
be efficiently constructed and manipulated in parallel. This is a challenging assignment so you are advised
to start early. Seriously, you are advised to start early. Good luck!

Contents

1 Due dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 Part 1: CUDA Warm-Up 1: SAXPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4 Part 2: CUDA Warm-Up 2: Parallel Prefix-Sum . . . . . . . . . . . . . . . . . . . . . . . . . 3

4.1 Exclusive Prefix Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Implementing "Find Repeats" Using Prefix Sum . . . . . . . . . . . . . . . . . . . . . 5
4.3 Grading and Test Harness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Part 3: A Simple Circle Renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.1 Renderer Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 CUDA Renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3 Renderer Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4 What You Need To Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.5 Grading Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Tips and Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.1 Catching CUDA Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Hand-in Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 Due dates

2 Final submission & write-up: 10:00 p.m. on Monday, December 8, 2025

2 Getting started

Download the starter code from Github:
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https://github.com/spe-fall25/project3-A_<your netid>.git}

The CUDA C programmer’s guide [PDF version] or [web version] is an excellent reference for
learning how to program in CUDA. There are a wealth of CUDA tutorials and SDK examples on
the web (just Google!) and on the [NVIDIA developer site]. In particular, you may enjoy the free
Udacity course [Introduction to Parallel Programming in CUDA].

Table 21 in the [CUDA C Programming Guide] is a handy reference for the maximum number of
CUDA threads per thread block, size of thread block, shared memory, etc for the NVIDIA RTX
2000 Ada Generation GPU you will used in this assignment. NVIDIA RTX 2000 Ada Generation
support CUDA compute capability 8.9.

For C++ questions (like what does the keyword mean), the [C++ Super-FAQ] is a great resource
that explains things in a way that’s detailed yet easy to understand (unlike a lot of C++ resources),
and was co-written by Bjarne Stroustrup, the creator of C++!

3 Part 1: CUDA Warm-Up 1: SAXPY

To gain a bit of practice writing CUDA programs, your warm-up task is to implement the SAXPY
function in CUDA. Starter code for this part of the assignment is located in the /saxpy directory
of the assignment repository. You can build and run the saxpy CUDA program by calling make

and ./cudaSaxpy in the /saxpy directory.

Please finish off the implementation of SAXPY in the function saxpyCuda in saxpy.cu. You will
need to allocate device global memory arrays and copy the contents of the host input arrays
X, Y, and result into CUDA device memory prior to performing the computation. After the
CUDA computation is complete, the result must be copied back into host memory. Please see
the definition of cudaMemcpy function in Section 3.2.2 of the Programmer’s Guide (web version),
or take a look at the helpful tutorial pointed to in the assignment starter code.

As part of your implementation, add timers around the CUDA kernel invocation in saxpyCuda.
After your additions, your program should time two executions:

• The provided starter code contains timers that measure the entire process of copying data
to the GPU, running the kernel, and copying data back to the CPU.

• You should also insert timers the measure only the time taken to run the kernel. (They should
not include the time of CPU-to-GPU data transfer or transfer of results from the GPU back
to the CPU.)

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/
https://www.udacity.com/blog/2014/01/update-on-udacity-cs344-intro-to.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#compute-capabilities
https://isocpp.org/faq
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When adding your timing code in the latter case, you’ll need to be careful: By defult a CUDA
kernel’s execution on the GPU is asynchronous with the main application thread running on the
CPU. For example, if you write code that looks like this:

double startTime = CycleTimer::currentSeconds();

saxpy_kernel<<<blocks, threadsPerBlock>>>(N, alpha, device_x, device_y, device_result);

double endTime = CycleTimer::currentSeconds();

You’ll measure a kernel execution time that seems amazingly fast! (Because you are only timing
the cost of the API call itself, not the cost of actually executing the resulting computation on the
GPU.

Therefore, you will want to place a call to cudaDeviceSynchronize() following the kernel call to
wait for completion of all CUDA work on the GPU. This call to cudaDeviceSynchronize() returns
when all prior CUDA work on the GPU has completed. Note that cudaDeviceSynchronize() is
not necessary after the cudaMemcpy() to ensure the memory transfer to the GPU is complete, since
cudaMempy() is synchronous under the conditions we are using it. (For those that wish to know
more, see [this documentation].)

double startTime = CycleTimer::currentSeconds();

saxpy_kernel<<<blocks, threadsPerBlock>>>(N, alpha, device_x, device_y, device_result);

cudaDeviceSynchronize();

double endTime = CycleTimer::currentSeconds();

Note that in your measurements that include the time to transfer to and from the CPU, a call to
cudaDeviceSynchronize() is not necessary before the final timer (after your call to cudaMemcopy()

that returns data to the CPU) because cudaMemcpy() will not return to the calling thread until after
the copy is complete.

Question 1. Compare and explain the difference between the results provided by two sets of
timers (timing only the kernel execution vs. timing the entire process of moving data to the
GPU and back in addition to the kernel execution). Are the bandwidth values observed roughly
consistent with the reported bandwidths available to the different components of the machine?
(You should use the web to track down the memory bandwidth of an NVIDIA RTX 2000 Ada
Generation GPU. Here is a hint. Several factors prevent peak bandwidth, including CPU moth-
erboard chipset performance and whether or not the host CPU memory used as the source of
the transfer is “pinned” — the latter allows the GPU to directly access memory without going
through virtual memory address translation. If you are interested, you can find more info here)

4 Part 2: CUDA Warm-Up 2: Parallel Prefix-Sum

Now that you’re familiar with the basic structure and layout of CUDA programs, as a second
exercise you are asked to come up with parallel implementation of the function find_repeats,
which, given a list of integers A, returns a list of all indices A for which A[i] == A[i+1].

https://docs.nvidia.com/cuda/cuda-runtime-api/api-sync-behavior.html#api-sync-behavior__memcpy-sync
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://kth.instructure.com/courses/12406/pages/optimizing-host-device-data-communication-i-pinned-host-memory
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For example, given the array {1,2,2,1,1,1,3,5,3,3}, your program should output the array
{1,3,4,8}.

4.1 Exclusive Prefix Sum

We want you to implement find_repeats by first implementing parallel exclusive prefix-sum
operation.

Exlusive prefix sum takes an array A and produces a new array output that has, at each index i,
the sum of all elements up to but not including A[i]. For example, given the array A={1,4,6,8,2},
the output of exclusive prefix sum output={0,1,5,11,19}.

The following "C-like" code is an iterative version of scan. In the pseudocode before, we use
parallel_for to indicate potentially parallel loops. Here is another resource about this algorithm:
http://cs149.stanford.edu/fall24/lecture/dataparallel/slide_17.

void exclusive_scan_iterative(int* start, int* end, int* output) {

int N = end - start;

memmove(output, start, N*sizeof(int));

// upsweep phase

for (int two_d = 1; two_d <= N/2; two_d*=2) {

int two_dplus1 = 2*two_d;

parallel_for (int i = 0; i < N; i += two_dplus1) {

output[i+two_dplus1-1] += output[i+two_d-1];

}

}

output[N-1] = 0;

// downsweep phase

for (int two_d = N/2; two_d >= 1; two_d /= 2) {

int two_dplus1 = 2*two_d;

parallel_for (int i = 0; i < N; i += two_dplus1) {

int t = output[i+two_d-1];

output[i+two_d-1] = output[i+two_dplus1-1];

output[i+two_dplus1-1] += t;

}

}

}

We would like you to use this algorithm to implement a version of parallel prefix sum in CUDA.
You must implement exclusive_scan function in scan/scan.cu. Your implementation will consist

http://cs149.stanford.edu/fall24/lecture/dataparallel/slide_17
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of both host and device code. The implementation will require multiple CUDA kernel launches
(one for each parallel_for loop in the pseudocode above).

Note: In the starter code, the reference solution scan implementation above assumes that the
input array’s length (N) is a power of 2. In the cudaScan function, we solve this problem by
rounding the input array length to the next power of 2 when allocating the corresponding buffers
on the GPU. However, the code only copies back N elements from the GPU buffer back to the
CPU buffer. This fact should simplify your CUDA implementation.

Compilation produces the binary cudaScan. Commandline usage is as follows:

Usage: ./cudaScan [options]

Program Options:

-m --test <TYPE> Run specified function on input. Valid tests are: scan,

find_repeats (default: scan)

-i --input <NAME> Run test on given input type. Valid inputs are: ones, random

(default: random)

-n --arraysize <INT> Number of elements in arrays

-t --thrust Use Thrust library implementation

-? --help This message

4.2 Implementing "Find Repeats" Using Prefix Sum

Once you have written exclusive_scan, implement the function find_repeats in scan/scan.cu.
This will involve writing more device code, in addition to one or more calls to exclusive_scan().
Your code should write the list of repeated elements into the provided output pointer (in device
memory), and then return the size of the output list.

When calling your exclusive_scan implementation, remember that the contents of the start

array are copied over to the output array. Also, the arrays passed to exclusive_scan are assumed
to be in device memory.

4.3 Grading and Test Harness

Grading: We will test your code for correctness and performance on random input arrays.

For reference, a scan score table is provided below, showing the performance of a simple CUDA
implementation on a K80 GPU. To check the correctness and performance score of your scan and
find_repeats implementation, run ./checker.py scan and ./checker.py find_repeats respec-
tively. Doing so will produce a reference table as shown below; your score is based solely on the
performance of your code. In order to get full credit, your code must perform within 20% of the
provided reference solution.

-------------------------
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Scan Score Table:

-------------------------

-------------------------------------------------------------------------

| Element Count | Ref Time | Student Time | Score |

-------------------------------------------------------------------------

| 1000000 | 0.766 | 0.143 (F) | 0 |

| 10000000 | 8.876 | 0.165 (F) | 0 |

| 20000000 | 17.537 | 0.157 (F) | 0 |

| 40000000 | 34.754 | 0.139 (F) | 0 |

-------------------------------------------------------------------------

| | Total score: | 0/5 |

-------------------------------------------------------------------------

This part of the assignment is largely about getting more practice with writing CUDA and think-
ing in a data parallel manner, and not about performance tuning code. Getting full performance
points on this part of the assignment should not require much (or really any) performance tun-
ing, just a direct port of the algorithm pseudocode to CUDA. However, there’s one trick: a naive
implementation of scan might launch N CUDA threads for each iteration of the parallel loops
in the pseudocode, and using conditional execution in the kernel to determine which threads
actually need to do work. Such a solution will not be performant! (Consider the last outmost
loop iteration of the upsweep phase, where only two threads would do work!). A full credit
solution will only launch one CUDA thread for each iteration of the innermost parallel loops.

Test Harness: By default, the test harness runs on a pseudo-randomly generated array that is the
same every time the program is run, in order to aid in debugging. You can pass the argument
-i random to run on a random array - we will do this when grading. We encourage you to come
up with alternate inputs to your program to help you evaluate it. You can also use the -n <size>

option to change the length of the input array.

The argument –thrust will use the [Thrust Library’s] implementation of [exclusive scan]. Up to
two points of extra credit for anyone that can create an implementation is competitive with
Thrust.

5 Part 3: A Simple Circle Renderer

Now for the real show!

The directory /render of the assignment starter code contains an implementation of renderer
that draws colored circles. Build the code, and run the render with the following command
line: ./render -r cpuref rgb. The program will output an image output_0000.ppm containing
three circles. Now run the renderer with the command line ./render -r cpuref snow. Now the
output image will be falling snow. PPM images can be viewed directly on OSX via preview. For
windows you might need to download a viewer.

Note: you can also use the -i option to send renderer output to the display instead of a file.

http://thrust.github.io/
https://docs.nvidia.com/cuda/archive/12.2.2/thrust/index.html?highlight=group%20prefix%20sums#prefix-sums
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(In the case of snow, you’ll see an animation of falling snow.) However, to use interactive mode
you’ll need to be able to setup X-windows forwarding to your local machine. ([This reference] or
[this reference] may help.)

The assignment starter code contains two versions of the renderer: a sequential, single-threaded
C++ reference implementation, implemented in refRenderer.cpp, and an incorrect parallel CUDA
implementation in cudaRenderer.cu.

5.1 Renderer Overview

We encourage you to familiarize yourself with the structure of the renderer codebase by in-
specting the reference implementation in refRenderer.cpp. The method setup is called prior to
rendering the first frame. In your CUDA-accelerated renderer, this method will likely contain all
your renderer initialization code (allocating buffers, etc). render is called each frame and is re-
sponsible for drawing all circles into the output image. The other main function of the renderer,
advanceAnimation, is also invoked once per frame. It updates circle positions and velocities. You
will not need to modify advanceAnimation in this assignment.

The renderer accepts an array of circles (3D position, velocity, radius, color) as input. The basic
sequential algorithm for rendering each frame is:

Clear image

for each circle

update position and velocity

for each circle

compute screen bounding box

for all pixels in bounding box

compute pixel center point

if center point is within the circle

compute color of circle at point

blend contribution of circle into image for this pixel

The figure below illustrates the basic algorithm for computing circle-pixel coverage using point-
in-circle tests. Notice that a circle contributes color to an output pixel only if the pixel’s center
lies within the circle.

An important detail of the renderer is that it renders semi-transparent circles. Therefore, the
color of any one pixel is not the color of a single circle, but the result of blending the contributions

http://atechyblog.blogspot.com/2014/12/google-cloud-compute-x11-forwarding.html
https://stackoverflow.com/questions/25521486/x11-forwarding-from-debian-on-google-compute-engine
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of all the semi-transparent circles overlapping the pixel (note the "blend contribution" part of the
pseudocode above). The renderer represents the color of a circle via a 4-tuple of red (R), green
(G), blue (B), and opacity (alpha) values (RGBA). Alpha = 1 corresponds to a fully opaque circle.
Alpha = 0 corresponds to a fully transparent circle. To draw a semi-transparent circle with color
(C_r, C_g, C_b, C_alpha) on top of a pixel with color (P_r, P_g, P_b), the renderer uses the
following math:

result_r = C_alpha * C_r + (1.0 - C_alpha) * P_r

result_g = C_alpha * C_g + (1.0 - C_alpha) * P_g

result_b = C_alpha * C_b + (1.0 - C_alpha) * P_b

Notice that composition is not commutative (object X over Y does not look the same as object Y
over X), so it’s important that the render draw circles in a manner that follows the order they
are provided by the application. (You can assume the application provides the circles in depth
order.) For example, consider the two images below where a blue circle is drawn OVER a green
circle which is drawn OVER a red circle. In the image on the left, the circles are drawn into the
output image in the correct order. In the image on the right, the circles are drawn in a different
order, and the output image does not look correct.

5.2 CUDA Renderer

After familiarizing yourself with the circle rendering algorithm as implemented in the reference
code, now study the CUDA implementation of the renderer provided in cudaRenderer.cu. You
can run the CUDA implementation of the renderer using the –renderer cuda (or -r cuda) cuda
program option.

The provided CUDA implementation parallelizes computation across all input circles, assigning
one circle to each CUDA thread. While this CUDA implementation is a complete implementation
of the mathematics of a circle renderer, it contains several major errors that you will fix in this
assignment. Specifically: the current implementation does not ensure image update is an atomic
operation and it does not preserve the required order of image updates (the ordering requirement
will be described below).
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5.3 Renderer Requirements

Your parallel CUDA renderer implementation must maintain two invariants that are preserved
trivially in the sequential implementation.

1. Atomicity: All image update operations must be atomic. The critical region includes read-
ing the four 32-bit floating-point values (the pixel’s rgba color), blending the contribution
of the current circle with the current image value, and then writing the pixel’s color back
to memory.

2. Order: Your renderer must perform updates to an image pixel in circle input order. That
is, if circle 1 and circle 2 both contribute to pixel P, any image updates to P due to circle
1 must be applied to the image before updates to P due to circle 2. As discussed above,
preserving the ordering requirement allows for correct rendering of transparent circles. (It
has a number of other benefits for graphics systems. If curious, talk to Kayvon.) A key
observation is that the definition of order only specifies the order of updates to the same
pixel. Thus, as shown below, there are no ordering requirements between circles that do
not contribute to the same pixel. These circles can be processed independently.

Since the provided CUDA implementation does not satisfy either of these requirements, the re-
sult of not correctly respecting order or atomicity can be seen by running the CUDA renderer
implementation on the rgb and circles scenes. You will see horizontal streaks through the result-
ing images, as shown below. These streaks will change with each frame.
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5.4 What You Need To Do

Your job is to write the fastest, correct CUDA renderer implementation you can. You may take
any approach you see fit, but your renderer must adhere to the atomicity and order requirements
specified above. A solution that does not meet both requirements will be given no more than 12
points on part 3 of the assignment. We have already given you such a solution!

A good place to start would be to read through cudaRenderer.cu and convince yourself that
it does not meet the correctness requirement. In particular, look at how CudaRenderer:render

launches the CUDA kernel kernelRenderCircles. (kernelRenderCircles is where all the work
happens.) To visually see the effect of violation of above two requirements, compile the program
with make. Then run ./render -r cuda rand10k which should display the image with 10K circles,
shown in the bottom row of the image above. Compare this (incorrect) image with the image
generated by sequential code by running ./render -r cpuref rand10k.

We recommend that you:

1. First rewrite the CUDA starter code implementation so that it is logically correct when
running in parallel (we recommend an approach that does not require locks or synchro-
nization)

2. Then determine what performance problem is with your solution.

3. At this point the real thinking on the assignment begins... (Hint: the circle-intersects-box
tests provided to you in circleBoxTest.cu_inl are your friend. You are encouraged to use
these subroutines.)

Following are commandline options to ./render:
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Usage: ./render [options] scenename

Valid scenenames are: rgb, rgby, rand10k, rand100k, rand1M, biglittle, littlebig,

pattern, micro2M, bouncingballs, fireworks, hypnosis, snow, snowsingle

Program Options:

-r --renderer <cpuref/cuda> Select renderer: ref or cuda (default=cuda)

-s --size <INT> Rendered image size: <INT>x<INT> pixels (default=1024)

-b --bench <START:END> Run for frames [START,END) (default=[0,1))

-c --check Check correctness of CUDA output against CPU reference

-i --interactive Render output to interactive display

-f --file <FILENAME> Output file name (FILENAME_xxxx.ppm) (default=output)

-? --help This message

Checker code: To detect correctness of the program, render has a convenient –check option.
This option runs the sequential version of the reference CPU renderer along with your CUDA
renderer and then compares the resulting images to ensure correctness. The time taken by your
CUDA renderer implementation is also printed.

We provide a total of eight circle datasets you will be graded on. However, in order to receive full
credit, your code must pass all of our correctness-tests. To check the correctness and performance
score of your code, run ./checker.py (notice the .py extension) in the /render directory. If you
run it on the starter code, the program will print a table like the following, along with the results
of our entire test set:

Score table:

------------

--------------------------------------------------------------------------

| Scene Name | Ref Time (T_ref) | Your Time (T) | Score |

--------------------------------------------------------------------------

| rgb | 0.2698 | (F) | 0 |

| rand10k | 2.7341 | (F) | 0 |

| rand100k | 26.1481 | (F) | 0 |

| pattern | 0.3591 | (F) | 0 |

| snowsingle | 16.1636 | (F) | 0 |

| biglittle | 14.9861 | (F) | 0 |

| rand1M | 188.0086 | (F) | 0 |

| micro2M | 355.9104 | (F) | 0 |

--------------------------------------------------------------------------

| | Total score: | 0/72 |

--------------------------------------------------------------------------

Note: on some runs, you may receive credit for some of these scenes, since the provided ren-
derer’s runtime is non-deterministic sometimes it might be correct. This doesn’t change the fact
that the current CUDA renderer is in general incorrect.

"Ref time" is the performance of our reference solution on your current machine (in the provided
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render_ref executable). "Your time" is the performance of your current CUDA renderer solution,
where an (F) indicates an incorrect solution. Your grade will depend on the performance of your
implementation compared to these reference implementations (see Grading Guidelines).

Along with your code, we would like you to hand in a clear, high-level description of how
your implementation works as well as a brief description of how you arrived at this solution.
Specifically address approaches you tried along the way, and how you went about determining
how to optimize your code (For example, what measurements did you perform to guide your
optimization efforts?).

Aspects of your work that you should mention in the write-up include:

1. Include your name and Netid at the top of your write-up.

2. Replicate the score table generated for your solution and specify which machine you ran
your code on.

3. Describe how you decomposed the problem and how you assigned work to CUDA thread
blocks and threads (and maybe even warps).

4. Describe where synchronization occurs in your solution.

5. What, if any, steps did you take to reduce communication requirements (e.g., synchroniza-
tion or main memory bandwidth requirements)?

6. Briefly describe how you arrived at your final solution. What other approaches did you try
along the way. What was wrong with them?

5.5 Grading Guidelines

The write-up for the assignment is worth 7 points.

• Your implementation is worth 72 points. These are equally divided into 9 points per scene
as follows:

– 2 correctness points per scene.

– 7 performance points per scene (only obtainable if the solution is correct). Your per-
formance will be graded with respect to the performance of a provided benchmark
reference renderer, Tre f :

– No performance points will be given for solutions having time (T) 10 times the mag-
nitude of Tre f .

– Full performance points will be given for solutions within 20% of the optimized solu-
tion ( T <= 1.20Tre f )

– For other values of T (for 1.20 Tre f < T < 10 _ Tre f ), your performance score on a scale
1 to 7 will be calculated as: ‘7 _ T_ref / T‘.
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• Up to 5 points extra credit (instructor discretion) for solutions that achieve significantly
greater performance than required. Your write up must clearly explain your approach
thoroughly.

• Up to 5 points extra credit (instructor discretion) for a high-quality parallel CPU-only ren-
derer implementation that achieves good utilization of all cores and SIMD vector units of
the cores. Feel free to use any tools at your disposal (e.g., SIMD intrinsics, ISPC, pthreads).
To receive credit you should analyze the performance of your GPU and CPU-based solu-
tions and discuss the reasons for differences in implementation choices made.

So the total points for this project is as follows:

• part 1 (5 points)

• part 2 (10 points)

• part 3 write up (13 points)

• part 3 implementation (72 points)

• potential **extra** credit (up to 10 points)

6 Tips and Hints

Below are a set of tips and hints compiled from previous years. Note that there are various ways
to implement your renderer and not all hints may apply to your approach.

• There are two potential axes of parallelism in this assignment. One axis is parallelism across
pixels another is parallelism across circles (provided the ordering requirement is respected for
overlapping circles). Solutions will need to exploit both types of parallelism, potentially at
different parts of the computation.

• The circle-intersects-box tests provided to you in circleBoxTest.cu_inl are your friend.
You are encouraged to use these subroutines.

• The shared-memory prefix-sum operation provided in exclusiveScan.cu_inl may be valu-
able to you on this assignment (not all solutions may choose to use it). See the simple
description of a prefix-sum [here]. We have provided an implementation of an exclusive
prefix-sum on a power-of-two-sized arrays in shared memory. The provided code does not
work on non-power-of-two inputs and IT ALSO REQUIRES THAT THE NUMBER OF
THREADS IN THE THREAD BLOCK BE THE SIZE OF THE ARRAY. PLEASE READ
THE COMMENTS IN THE CODE.

https://nvidia.github.io/cccl/thrust/api/function_group__prefixsums_1ga333bd4f34742dcf68d3ac5a0933f67db.html
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• Take a look at the shadePixel method that is being called. Notice how it is doing many
global memory operations to update the color of a pixel. It might be wise to instead
use a local accumulator in your kernelRenderCircles method. You can then perform the
accumulation of a pixel value in a register, and once the final pixel value is accumulated
you can then just perform a single write to global memory.

• You are allowed to use the [Thrust library] in your implementation if you so choose. Thrust
is not necessary to achieve the performance of the optimized CUDA reference implemen-
tations. There is one popular way of solving the problem that uses the shared memory
prefix-sum implementation that we give you. There another popular way that uses the
prefix-sum routines in the Thrust library. Both are valid solution strategies.

• Is there data reuse in the renderer? What can be done to exploit this reuse?

• How will you ensure atomicity of image update since there is no CUDA language primitive
that performs the logic of the image update operation atomically? Constructing a lock out
of global memory atomic operations is one solution, but keep in mind that even if your
image update is atomic, the updates must be performed in the required order. We suggest
that you think about ensuring order in your parallel solution first, and only then consider
the atomicity problem (if it still exists at all) in your solution.

• For the tests which contain a larger number of circles - rand1M and micro2M - you should be
careful about allocating temporary structures in global memory. If you allocate too much
global memory, you will have used up all the memory on the device. If you are not checking
the cudaError_t value that is returned from a call to cudaMalloc, then the program will still
execute but you will not know that you ran out of device memory. Instead, you will fail
the correctness check because you were not able to make your temporary structures. This
is why we suggest you to use the CUDA API call wrapper below so you can wrap your
cudaMalloc calls and produce an error when you run out of device memory.

• If you find yourself with free time, have fun making your own scenes!

6.1 Catching CUDA Errors

By default, if you access an array out of bounds, allocate too much memory, or otherwise cause
an error, CUDA won’t normally inform you; instead it will just fail silently and return an error
code. You can use the following macro (feel free to modify it) to wrap CUDA calls:

#define DEBUG

#ifdef DEBUG

#define cudaCheckError(ans) { cudaAssert((ans), __FILE__, __LINE__); }

http://thrust.github.io/
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inline void cudaAssert(cudaError_t code, const char *file, int line, bool abort=true)

{

if (code != cudaSuccess)

{

fprintf(stderr, "CUDA Error: %s at %s:%d\n",

cudaGetErrorString(code), file, line);

if (abort) exit(code);

}

}

#else

#define cudaCheckError(ans) ans

#endif

Note that you can undefine DEBUG to disable error checking once your code is correct for
improved performance.

You can then wrap CUDA API calls to process their returned errors as such:

cudaCheckError( cudaMalloc(&a, size*sizeof(int)) );

Note that you can’t wrap kernel launches directly. Instead, their errors will be caught on the next
CUDA call you wrap:

kernel<<<1,1>>>(a); // suppose kernel causes an error!

cudaCheckError( cudaDeviceSynchronize() ); // error is printed on this line

All CUDA API functions, cudaDeviceSynchronize, cudaMemcpy, cudaMemset, and so on can be
wrapped.

IMPORTANT: if a CUDA function error’d previously, but wasn’t caught, that error will show
up in the next error check, even if that wraps a different function. For example:

...

line 742: cudaMalloc(&a, -1); // executes, then continues

line 743: cudaCheckError(cudaMemcpy(a,b)); // prints "CUDA Error: out of memory at

cudaRenderer.cu:743"

...

Therefore, while debugging, it’s recommended that you wrap all CUDA API calls (at least in
code that you wrote).

(Credit: adapted from [this Stack Overflow post]

7 Hand-in Instructions

Please submit your work using Gradescope.

https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
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1. Please submit your writeup as the file writeup.pdf.

2. Please submit run sh create_submission.sh to generate a zip to submit to gradescope.
Note that this will run make clean in your code directories so you will have to run make
again to run your code. If the script errors saying Permission denied, you should run chmod

+x create_submission.sh and then try rerunning the script.

Our grading scripts will rerun the checker code allowing us to verify your score matches what
you submitted in the writeup.pdf. We might also try to run your code on other datasets to
further examine its correctness.
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