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Some due dates

- Project 1 Final is due this Thursday!

- You can use late days for your writeup but not your code
submission.

- Make sure to run the correctness check first!

- Reach tier 35 to get at least a B grade for final.

- Homework 4 is due next Monday (October 13).
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The Final Writeup

- Your final write-up can be an update of your beta write-up. In
addition to the beta, it should include the following:

- An overview of changes you made to your beta release and

what motivated you to do them

0 surprised by performance ranking
1 ideas conceived before the beta deadline but ran out of time
implementing them

- Any updates to the acknowledgment, including specifically
which of classmates’ beta codes may have inspired you.
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PERFORMANCE ENGINEERING
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Performance Engineering

code,

measure,
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Basic Performance-Engineering Workflow

1. Measure the performance of Program A.

2. Make a change to Program A to produce a
hopefully faster Program A".

3. Measure the performance of Program A".
4. If A" beats A, set A = A".
5. If Ais still not fast enough, go to Step 2. 7
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If you can’t measure performance reliably,
it is hard to make many small changes that add up
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TooLs To MEASURE SOFTWARE
PERFORMANCE
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How Much to Measure

- Measure the whole program
0 e.g., /usr/bin/time
0 e.g., perf stat, cachegrind, strace

- Measure just the part of the program we care about
o Insert timing calls in the program
0 e.g., clock_gettime(), gettimeofday(), rdtsc()

- Create a profile of the program
0 e.g., gdb, gprof
0 use perf record/report, based on HW counters that OS and HW support
n Using sampling or instrumentation
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/usr/bin/time

The time command can measure elapsed time, user time, and system time
for an entire program.

$ /usr/bin/time my-program argl arg2

real ©m3.502s
user ©moO.023s
Sys Omo.005s

What does that mean?
- real is wall-clock time (elapsed time).

- user is the amount of processor time spent in user-mode code (outside
the kernel) within the process.

- sys is the amount of processor time spent in the kernel within the
process
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clock_gettime (CLOCK_MONOTONIC, ..)

#include <time.h>

struct timespec start, end;

clock_gettime (CLOCK_MONOTONIC, &start);
function_to_measure();
clock_gettime (CLOCK_MONOTONIC, &end);

double tdiff = (end.tv_sec - start.tv_sec)
+ le-9%(end.tv_nsec - start.tv_nsec); 7

¢ Typically, clock_gettime (CLOCK_MONOTONIC, ..) is fast

o roughly 80ns — about 102 faster than an ordinary system call

e clock_gettime (CLOCK_MONOTONIC, ..) has nice guarantees

o it never runs backwards

e But clock_gettime (CLOCK_MONOTONIC, ..) isn't always fast
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rdtsc()

x86 processors provide a time-stamp counter (TSC) in

hardware.
You can read TSC as follows:
For older static inline unsigned long long rdtsc(void) {
Compilers unsigned hi, lo;
asm®_, & volaitiTe™ (@ rdtsc" e "=atC1loy, . "=d" @ D"

return ( ((unsigned long long)lo)
| ((Cunsigned long long)hi)<<32));

] 4

For newer
compilers __builtin_readcyclecounter();

% The time returned is “clock cycles since boot.”
% rdtsc() runs in about 32ns.
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Issues with TSC

Use rdtsc() with caution!

- May give different answers on different cores on the same
machine

- TSC can appear to run backwards, due to process migration

- Not all cycles take the same amount of time!

n Modern processors change clock frequencies dynamically, e.g. DVFS, Turbo
Boost

o Processors reduce their clock frequency for AVX, AVX2, and AVX512
instructions

. Converting clock cycles to seconds can be tricky
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Program Instrumentation

We can make a profiler by instrumenting the program.

static vec_t vec_add(vec_t a, vec_t b) { ””””,[ i
clock_gettime(CLOCK_MONOTONIC, &start); —_ Instrumentation

vec_t sum = { a.x + b.x, a.y + b.y };

clock_gettime(CLOCK_MONOTONIC, &end); ) I nstru mentatlon
report_time("vec_add", &start, &end); N

return sum;

3

static vec_t vec_scale(vec_t v, double a) { )In rumentation ]
clock_gettime (CLOCK_MONOTONIC, &start); — strume

vec_t scaled = { v.x * a, v.y * a }; )
clock_gettime(CLOCK_MONOTONIC, &end); Instrumentation

- n n 4\
report_time("vec_scale", &start, &end);
return scaled;

) 7
Caution: Watch out for probe effect, where program
instrumentation alters the program’s behavior in unintended ways.
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Profiling by Sampling

IDEA: Interrupt the running program at regular intervals, and look at the
stack each time to determine which functions are usually being

executed.

« pmprof, gprof, perf record, and gperftools automate this
strategy to provide profile information for all functions

- This approach is not accurate if it doesn’t obtain enough
samples. (gprof samples only 100 times per second.)

- You can do this yourself!
0 “Poor Man’s Profiler”: Run your program under gdb, and type control-C,

but at random intervals
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Simulation

Simulators can deliver accurate and repeatable perf

numbers
0 €.g. cachegrind, gem5

- For deterministic programs, you need only run the simulator once

. Simulators are robust to probe effect

o If want a particular metric, you can go in and collect it without perturbing the
simulation

- But they often run much slower than real time

- Simulators don’t capture all relevant performance phenomena
n e.g. cachegrind does not model all memory-system features, e.g., prefetching
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Performance Surrogates
What could we measure as a surrogate for time?

. Work: Number of executed instructions

o Using hardware counters (on systems that support them) or program
instrumentation

- Processor cycles
0 Using rdtsc()

- Memory accesses, or cache hits and misses

n Using hardware counters

0 cachegrind simulation (gives repeatable numbers but slow)
. Span

0 Using Cilkscale
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QUIESCING SYSTEMS
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Genichi Taguchi and Quality

If you were an Olympic pistol coach, which shooter would you recruit
for your team?

Answer: B, because you just need to teach B to shoot lower and to the left.
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If you can reduce variability, you can
compensate for systematic and random
measurement errors.
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Sources of Variability

» Daemons and background jobs * Runtime scheduler

* Interrupts * DVFS and Turbo Boost

» Code and data alignment * Network traffic

 Multitenancy
* Virtualization

* Hyperthreading

» System calls
» Operating-system process scheduling

* Thread placement
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Unquiesced System

Experiment
* Cilk program to count the primes in an interval
* AWS c4 instance (18 cores)

 2-way hyperthreading on, Turbo Boost on
18 Cilk workers

* 100 runs, each about 1 second
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Quiesced System

Experiment

* Cilk program to count the primes in an interval
* AWS c4 instance (18 cores)

 2-way hyperthreading off, Turbo Boost off

18 Cilk workers

* 100 runs, each about 1 second
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Quiescing the System

- Minimize the number of other jobs running
o Shut down daemons and cron jobs
o Disconnect the network
o Don’t fiddle with the mouse!

o For serial jobs, don’t run on core 0, where many interrupt handlers are
usually run, see /proc/interrupts

- Use Linux CPU frequency governor to control DVFS and Turbo
Boost

. Use taskset to pin Cilk workers to cores or hardware threads and
avoid hyperthreading

- Many of these mitigations have been done for you in telerun
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Wise Words from a Giant of Science

parapnr®
ced

To measure is to know.

If you cannot measure it, &
you cannot improve it. “ |

William Thomson,
a.k.a., Lord Kelvin
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CODING TIME BEFORE FINAL DUE!
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If you still haven’t, think about these...

- How did you set up your temp buffer for loading and storing
your blocks? How well does it utilize your cache?

- Any possibility that you can try out some different buffer
size”? How do you allocate your buffer if you want to load a
different block size?

. How can you overlap some direct memory access time with
the actual rotation time? (Hint: think about prefetching)

- In what order are you accessing the matrix right now when
reading and writing blocks”? How can you access your matrix
in a cache-friendly way?
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