Software Performance Engineering

PER ORDER OF SPE

Recitation 1.6

Sophia Sun
Tuesday, October 7, 2025

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers



Some due dates

- Project 1 Final is due this Thursday!

- You can use late days for your writeup but not your code
submission.

- Make sure to run the correctness check first!

- Reach tier 35 to get at least a B grade for final.

- Homework 4 is due next Monday (October 13).

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers



The Final Writeup

- Your final write-up can be an update of your beta write-up. In
addition to the beta, it should include the following:

- An overview of changes you made to your beta release and

what motivated you to do them

0 surprised by performance ranking
1 ideas conceived before the beta deadline but ran out of time
implementing them

- Any updates to the acknowledgment, including specifically
which of classmates’ beta codes may have inspired you.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers



PER ORDER OF SPE

PERFORMANCE ENGINEERING

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers



Performance Engineering

code,

measure,
© 2008-2024 by the MIT 6.172 and 6.106 Lecturers



Basic Performance-Engineering Workflow

1. Measure the performance of Program A.

2. Make a change to Program A to produce a
hopefully faster Program A".

3. Measure the performance of Program A".
4. If A" beats A, set A = A".
5. If Ais still not fast enough, go to Step 2. 7

12 12

1 1

0.8 0.8
0.6 0.6
0.4 0.4

0.2 0.2

0 0
1234567 8 91011121314151617181920 1234567 891011121314151617181920

If you can’t measure performance reliably,
it is hard to make many small changes that add up

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers



PER ORDER OF SPE

TooLs To MEASURE SOFTWARE
PERFORMANCE

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers



How Much to Measure

- Measure the whole program
0 e.g., /usr/bin/time
0 e.g., perf stat, cachegrind, strace

- Measure just the part of the program we care about
o Insert timing calls in the program
0 e.g., clock_gettime(), gettimeofday(), rdtsc()

- Create a profile of the program
0 e.g., gdb, gprof
0 use perf record/report, based on HW counters that OS and HW support
n Using sampling or instrumentation

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

10



/usr/bin/time

The time command can measure elapsed time, user time, and system time
for an entire program.

$ /usr/bin/time my-program argl arg2

real ©m3.502s
user ©moO.023s
Sys Omo.005s

What does that mean?
- real is wall-clock time (elapsed time).

- user is the amount of processor time spent in user-mode code (outside
the kernel) within the process.

- sys is the amount of processor time spent in the kernel within the
process

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

11



clock_gettime (CLOCK_MONOTONIC, ..)

#include <time.h>

struct timespec start, end;

clock_gettime (CLOCK_MONOTONIC, &start);
function_to_measure();
clock_gettime (CLOCK_MONOTONIC, &end);

double tdiff = (end.tv_sec - start.tv_sec)
+ le-9%(end.tv_nsec - start.tv_nsec); 7

¢ Typically, clock_gettime (CLOCK_MONOTONIC, ..) is fast

o roughly 80ns — about 102 faster than an ordinary system call

e clock_gettime (CLOCK_MONOTONIC, ..) has nice guarantees

o it never runs backwards

e But clock_gettime (CLOCK_MONOTONIC, ..) isn't always fast

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

12



rdtsc()

x86 processors provide a time-stamp counter (TSC) in

hardware.
You can read TSC as follows:
For older static inline unsigned long long rdtsc(void) {
Compilers unsigned hi, lo;
asm®_, & volaitiTe™ (@ rdtsc" e "=atC1loy, . "=d" @ D"

return ( ((unsigned long long)lo)
| ((Cunsigned long long)hi)<<32));

] 4

For newer
compilers __builtin_readcyclecounter();

% The time returned is “clock cycles since boot.”
% rdtsc() runs in about 32ns.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers



Issues with TSC

Use rdtsc() with caution!

- May give different answers on different cores on the same
machine

- TSC can appear to run backwards, due to process migration

- Not all cycles take the same amount of time!

n Modern processors change clock frequencies dynamically, e.g. DVFS, Turbo
Boost

o Processors reduce their clock frequency for AVX, AVX2, and AVX512
instructions

. Converting clock cycles to seconds can be tricky

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

14



Program Instrumentation

We can make a profiler by instrumenting the program.

static vec_t vec_add(vec_t a, vec_t b) { ””””,[ i
clock_gettime(CLOCK_MONOTONIC, &start); —_ Instrumentation

vec_t sum = { a.x + b.x, a.y + b.y };

clock_gettime(CLOCK_MONOTONIC, &end); ) I nstru mentatlon
report_time("vec_add", &start, &end); N

return sum;

3

static vec_t vec_scale(vec_t v, double a) { )In rumentation ]
clock_gettime (CLOCK_MONOTONIC, &start); — strume

vec_t scaled = { v.x * a, v.y * a }; )
clock_gettime(CLOCK_MONOTONIC, &end); Instrumentation

- n n 4\
report_time("vec_scale", &start, &end);
return scaled;

) 7
Caution: Watch out for probe effect, where program
instrumentation alters the program’s behavior in unintended ways.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 16



Profiling by Sampling

IDEA: Interrupt the running program at regular intervals, and look at the
stack each time to determine which functions are usually being

executed.

« pmprof, gprof, perf record, and gperftools automate this
strategy to provide profile information for all functions

- This approach is not accurate if it doesn’t obtain enough
samples. (gprof samples only 100 times per second.)

- You can do this yourself!
0 “Poor Man’s Profiler”: Run your program under gdb, and type control-C,

but at random intervals

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

17



Simulation

Simulators can deliver accurate and repeatable perf

numbers
0 €.g. cachegrind, gem5

- For deterministic programs, you need only run the simulator once

. Simulators are robust to probe effect

o If want a particular metric, you can go in and collect it without perturbing the
simulation

- But they often run much slower than real time

- Simulators don’t capture all relevant performance phenomena
n e.g. cachegrind does not model all memory-system features, e.g., prefetching

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

18



Performance Surrogates
What could we measure as a surrogate for time?

. Work: Number of executed instructions

o Using hardware counters (on systems that support them) or program
instrumentation

- Processor cycles
0 Using rdtsc()

- Memory accesses, or cache hits and misses

n Using hardware counters

0 cachegrind simulation (gives repeatable numbers but slow)
. Span

0 Using Cilkscale

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

19



QUIESCING SYSTEMS

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

20



Genichi Taguchi and Quality

If you were an Olympic pistol coach, which shooter would you recruit
for your team?

Answer: B, because you just need to teach B to shoot lower and to the left.

2\
£

> &c\

(4

If you can reduce variability, you can
compensate for systematic and random
measurement errors.

© 2008-2024 by the 21



Sources of Variability

» Daemons and background jobs * Runtime scheduler

* Interrupts * DVFS and Turbo Boost

» Code and data alignment * Network traffic

 Multitenancy
* Virtualization

* Hyperthreading

» System calls
» Operating-system process scheduling

* Thread placement

/ <= e
> \\; . |
iy %7 ///?/ X §2\°§
G ip_ EEE

.;'?\

A
§ \
&

iy m \\ i \\(6{ —
“G\% 2 3 . ;“\\;"
T

© 2008-2024 by the MIT 6.172 and b.1VUb Lecturers

22



Unquiesced System

Experiment
* Cilk program to count the primes in an interval
* AWS c4 instance (18 cores)

 2-way hyperthreading on, Turbo Boost on
18 Cilk workers

* 100 runs, each about 1 second

25%

20%

15%

10%

Percent above
Minimum

5%

0%

0 10 20 30 40 50 60 70 80 90 100

Performance Rank of Run
© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 23



Quiesced System

Experiment

* Cilk program to count the primes in an interval
* AWS c4 instance (18 cores)

 2-way hyperthreading off, Turbo Boost off

18 Cilk workers

* 100 runs, each about 1 second

0.8% N Vi
0.7%
0.6%
05%
0.4%
0.3%
0.2%
01%

>

Percent above
Minimum

0.0% T - T - - : - . .

0 10 20 30 40 50 60 70 80 S0 100
Performance Rank of Run

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

24



Quiescing the System

- Minimize the number of other jobs running
o Shut down daemons and cron jobs
o Disconnect the network
o Don’t fiddle with the mouse!

o For serial jobs, don’t run on core 0, where many interrupt handlers are
usually run, see /proc/interrupts

- Use Linux CPU frequency governor to control DVFS and Turbo
Boost

. Use taskset to pin Cilk workers to cores or hardware threads and
avoid hyperthreading

- Many of these mitigations have been done for you in telerun

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

25



Wise Words from a Giant of Science

parapnr®
ced

To measure is to know.

If you cannot measure it, &
you cannot improve it. “ |

William Thomson,
a.k.a., Lord Kelvin

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

26



CODING TIME BEFORE FINAL DUE!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

27



If you still haven’t, think about these...

- How did you set up your temp buffer for loading and storing
your blocks? How well does it utilize your cache?

- Any possibility that you can try out some different buffer
size”? How do you allocate your buffer if you want to load a
different block size?

. How can you overlap some direct memory access time with
the actual rotation time? (Hint: think about prefetching)

- In what order are you accessing the matrix right now when
reading and writing blocks”? How can you access your matrix
in a cache-friendly way?

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers



