
Software Performance Engineering

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

Recitation 1.6

Sophia Sun
Tuesday, October 7, 2025

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Some due dates

● Project 1 Final is due this Thursday!
● You can use late days for your writeup but not your code

submission.
● Make sure to run the correctness check first!
● Reach tier 35 to get at least a B grade for final.

● Homework 4 is due next Monday (October 13).

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

The Final Writeup

● Your final write-up can be an update of your beta write-up. In
addition to the beta, it should include the following:

● An overview of changes you made to your beta release and
what motivated you to do them
� surprised by performance ranking
� ideas conceived before the beta deadline but ran out of time

implementing them
● Any updates to the acknowledgment, including specifically

which of classmates’ beta codes may have inspired you.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

PERFORMANCE ENGINEERING

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Performance Engineering
think, code,

run,measure,
6

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

1. Measure the performance of Program A.
2. Make a change to Program A to produce a

hopefully faster Program A′.
3. Measure the performance of Program A′.
4. If A′ beats A, set A = A′.
5. If A is still not fast enough, go to Step 2.

If you can’t measure performance reliably,
it is hard to make many small changes that add up

Basic Performance-Engineering Workflow

7

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

TOOLS TO MEASURE SOFTWARE
PERFORMANCE

8

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

How Much to Measure

10

● Measure the whole program
� e.g., /usr/bin/time
� e.g., perf stat, cachegrind, strace

● Measure just the part of the program we care about
� Insert timing calls in the program
� e.g., clock_gettime(), gettimeofday(), rdtsc()

● Create a profile of the program
� e.g., gdb, gprof
� use perf record/report, based on HW counters that OS and HW support
� Using sampling or instrumentation

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

/usr/bin/time
The time command can measure elapsed time, user time, and system time
for an entire program.

$ /usr/bin/time my-program arg1 arg2

real 0m3.502s
user 0m0.023s
sys 0m0.005s

What does that mean?
∙ real is wall-clock time (elapsed time).
∙ user is the amount of processor time spent in user-mode code (outside

the kernel) within the process.
∙ sys is the amount of processor time spent in the kernel within the

process

11

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

clock_gettime(CLOCK_MONOTONIC, …)
#include <time.h>

struct timespec start, end;

clock_gettime(CLOCK_MONOTONIC, &start);
function_to_measure();
clock_gettime(CLOCK_MONOTONIC, &end);

double tdiff = (end.tv_sec - start.tv_sec)
 + 1e-9*(end.tv_nsec - start.tv_nsec);

12

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

rdtsc()
x86 processors provide a time-stamp counter (TSC) in
hardware.

❖ The time returned is “clock cycles since boot.”
❖ rdtsc() runs in about 32ns.

13

static inline unsigned long long rdtsc(void) {
 unsigned hi, lo;
 __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
 return (((unsigned long long)lo)
 | (((unsigned long long)hi)<<32));
}

__builtin_readcyclecounter();

For older
compilers

For newer
compilers

You can read TSC as follows:

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Issues with TSC
Use rdtsc() with caution!

● May give different answers on different cores on the same
machine

● TSC can appear to run backwards, due to process migration
● Not all cycles take the same amount of time!
� Modern processors change clock frequencies dynamically, e.g. DVFS, Turbo

Boost
� Processors reduce their clock frequency for AVX, AVX2, and AVX512

instructions

● Converting clock cycles to seconds can be tricky

14

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Program Instrumentation
We can make a profiler by instrumenting the program.

Caution: Watch out for probe effect, where program
instrumentation alters the program’s behavior in unintended ways.

static vec_t vec_add(vec_t a, vec_t b) {
 clock_gettime(CLOCK_MONOTONIC, &start);
 vec_t sum = { a.x + b.x, a.y + b.y };
 clock_gettime(CLOCK_MONOTONIC, &end);
 report_time("vec_add", &start, &end);
 return sum;
}

static vec_t vec_scale(vec_t v, double a) {
 clock_gettime(CLOCK_MONOTONIC, &start);
 vec_t scaled = { v.x * a, v.y * a };
 clock_gettime(CLOCK_MONOTONIC, &end);
 report_time("vec_scale", &start, &end);
 return scaled;
}

Instrumentation

Instrumentation

Instrumentation

Instrumentation

16

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Profiling by Sampling
IDEA: Interrupt the running program at regular intervals, and look at the
stack each time to determine which functions are usually being
executed.

17

● pmprof, gprof, perf record, and gperftools automate this
strategy to provide profile information for all functions

● This approach is not accurate if it doesn’t obtain enough
samples. (gprof samples only 1OO times per second.)

● You can do this yourself!
� “Poor Man’s Profiler”: Run your program under gdb, and type control-C,
but at random intervals

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Simulation

Simulators can deliver accurate and repeatable perf
numbers

� e.g. cachegrind, gem5

18

● For deterministic programs, you need only run the simulator once
● Simulators are robust to probe effect
� If want a particular metric, you can go in and collect it without perturbing the

simulation
● But they often run much slower than real time
● Simulators don’t capture all relevant performance phenomena
� e.g. cachegrind does not model all memory-system features, e.g., prefetching

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Performance Surrogates

19

● Work: Number of executed instructions
� Using hardware counters (on systems that support them) or program

instrumentation
● Processor cycles
� Using rdtsc()

● Memory accesses, or cache hits and misses
� Using hardware counters
� cachegrind simulation (gives repeatable numbers but slow)

● Span
� Using Cilkscale

What could we measure as a surrogate for time?

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

QUIESCING SYSTEMS

20

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Genichi Taguchi and Quality

A B

Question: If you were an Olympic pistol coach, which shooter would you recruit
for your team?

Performance-engineering lesson
If you can reduce variability, you can
compensate for systematic and random
measurement errors.

21

Answer: B, because you just need to teach B to shoot lower and to the left.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Sources of Variability
• Daemons and background jobs

• Interrupts

• Code and data alignment

• System calls

• Operating-system process scheduling

• Thread placement

• Runtime scheduler

• DVFS and Turbo Boost

• Network traffic

• Multitenancy

• Virtualization

• Hyperthreading

22

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Unquiesced System
Experiment
• Cilk program to count the primes in an interval
• AWS c4 instance (18 cores)
• 2-way hyperthreading on, Turbo Boost on
• 18 Cilk workers
• 100 runs, each about 1 second

Performance Rank of Run

P
er

ce
nt

 a
bo

ve

M
in

im
um

23

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Quiesced System

Performance Rank of Run

P
er

ce
nt

 a
bo

ve

M
in

im
um

Experiment
• Cilk program to count the primes in an interval
• AWS c4 instance (18 cores)
• 2-way hyperthreading off, Turbo Boost off
• 18 Cilk workers
• 100 runs, each about 1 second

24

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Quiescing the System

25

● Minimize the number of other jobs running
� Shut down daemons and cron jobs
� Disconnect the network
� Don’t fiddle with the mouse!
� For serial jobs, don’t run on core 0, where many interrupt handlers are

usually run, see /proc/interrupts

● Use Linux CPU frequency governor to control DVFS and Turbo
Boost

● Use taskset to pin Cilk workers to cores or hardware threads and
avoid hyperthreading

● Many of these mitigations have been done for you in telerun

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Wise Words from a Giant of Science

To measure is to know.

If you cannot measure it,
you cannot improve it.

William Thomson,
a.k.a., Lord Kelvin

Paraph
ra

sed

^

26

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

CODING TIME BEFORE FINAL DUE!

27

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

If you still haven’t, think about these…

● How did you set up your temp buffer for loading and storing
your blocks? How well does it utilize your cache?

● Any possibility that you can try out some different buffer
size? How do you allocate your buffer if you want to load a
different block size?

● How can you overlap some direct memory access time with
the actual rotation time? (Hint: think about prefetching)

● In what order are you accessing the matrix right now when
reading and writing blocks? How can you access your matrix
in a cache-friendly way?

