Software Performance Engineering

PER ORDER OF SPE

Recitation 1.5

Sophia Sun
Tuesday, Sep 30, 2025

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Project 1 Beta Submission Tiers

Project 1 Beta Submission Tiers
6

Count

<20 >=20, <25

>=25, <30 >=30, <35 >=35 invalid
Range
© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Some due dates

. Homework 3 is due Sep 29 yesterday
- Homework 4 will release this Thursday

- Project 1 final is due October 9

- The final writeup:
o make sure to include it in your GitHub repo.
o your design, your current performance
o what you've improved since the beta submission

Reach tier 35 to get at least a B grade for final

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

VECTORIZATION

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Basic Vector Instructions

. Vector Register Sizes: xmm: 128, ymm: 256, zmm—542-bits

. Packing: Fit many values in one register
o xmm fits 2x uint64 _t, 4x int32_t, 4x float, etc...
0 in general = (128/8) / sizeof(T)
. Packed Arithmetic Operations
o add, subtract, multiply, divide, reciprocate, max, min, sqrt,
reciprocal of sqrt

. Packed Comparison Operations
- Packed Logical Operations

. Packed Type Conversions
0 int to float etc

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Overlapping Memory Regions

- When A[] and B[] overlap, memcpy(B, A, n) can be wrong
1 because the memcpy can overwrite data from the source, which it
would need to use later

. Same thing can happen with vector operations
- To vectorize codes that deal with two arrays, need to know
they don'’t overlap
- We can mark this using the restrict keyword
e 1nt* restrict A, int* restrict B
o The only way to obtain pointers from A's memory region is by
offsetting from A

o Thus A and B cannot overlap because there are no (non UB)
offsets into each other

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

What can a compiler auto-vectorize?

- “Pure” (not interdependent) loop iterations
1 Dependence between loop iterations
« Reductions
0 Sum or product of contiguous memory: can detect the result
variable is used for reduction
« Inductions
0 Al =1
. If Statements
1 Certain if statements can be converted to branchless code
. Stride
0 Afi] += BJi * 4];
« When restrict is not known

o Generates both vector and scalar code paths
0 Tests for overlap at runtime

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Associativity of Reductions

1+(2+3)==(1+2)+3
0.1+ (0.2+0.3)1=(0.1+0.2)+ 0.3

- Floating point addition is not associative. This means order
matters.

- Vector operations do not add the values in the same order
as a scalar loop.

. -0O3 has to produce code that behaves exactly the same as
-00, so the result might be different

. For float: Need the -ffast-math flag to tell the compiler we’re
ok with this.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

USEFUL INTRINSICS

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Alignment Hint

void *__builtin_assume_aligned(const void *arg,
size_t align);

Returns its first argument and allows the compiler to assume
that the returned pointer is at least align bytes aligned.

// x is at least 16 byte aligned
void *x = __builtin_assume_aligned(arg, 16);

// (char *) x - 8 is 32 byte aligned
void *x = __builtin_assume_aligned(arg, 32, 8);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Other Bit Manipulations

uint64_t __builtin_rotateleft64(uint64_t x, bits_t amt);
uint64_t __builtin_rotateright64(uint64_t x, bits_t amt);
uint64_t __builtin_bitreverse64(uint64_t x);

uint64_t __builtin_bswap64(uint64_t x);

bits_t __builtin_popcountll(uint64_t x);
bits_t __builtin_clzl1l(uint64_t x);
bits_t __builtin_ctzl1l(uint64_t x);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Parallel Bit Extraction

#include <immintrin.h>
uint64_t _pext_u64(uint64_t s1, uint64_t mask);

Transfer either contiguous or non-contiguous bits in the first
source operand to contiguous low order bit positions in the
destination according to the mask values.

SRULTS31]S307 S2S28[S2T] - — — - [7] S6] S5 [S4] S3] Sq SI[S

R
?mgs)ooo 0]-——-[0] [0JOUTITO[0

DEST 0(0[0 [0|-=—==-({0[0]0]01S28

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Packed Shift

#include <immintrin.h>
__m128i _mm_sll_epi64(__m128i reg, __m128i count);

Shift the two 64 bit numbers packed in reg left by count.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Pre Fetching!

__builtin_prefetch (const void *addr[, rw][,
locality]])

Takes:

- Addr to prefetch from
- Read mode or write mode
- Locality (L1 /L2/ L3/ auto)

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Intel Intrinsics Guide

Intel® Intrinsics Guide

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

CoDING TIME!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

17

