
Software Performance Engineering

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

Recitation 1.5

Sophia Sun
Tuesday, Sep 30, 2025



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Project 1 Beta Submission Tiers



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Some due dates

● Homework 3 is due Sep 29 yesterday
● Homework 4 will release this Thursday

● Project 1 final is due October 9
● The final writeup:

� make sure to include it in your GitHub repo.
� your design, your current performance
� what you’ve improved since the beta submission

● Reach tier 35 to get at least a B grade for final



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

VECTORIZATION



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Basic Vector Instructions

● Vector Register Sizes: xmm: 128, ymm: 256, zmm: 512 bits
● Packing: Fit many values in one register

� xmm fits 2x uint64_t, 4x int32_t, 4x float, etc…
� in general = (128/8) / sizeof(T)

● Packed Arithmetic Operations
� add, subtract, multiply, divide, reciprocate, max, min, sqrt, 

reciprocal of sqrt
● Packed Comparison Operations
● Packed Logical Operations
● Packed Type Conversions

� int to float etc



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Overlapping Memory Regions
● When A[] and B[] overlap, memcpy(B, A, n) can be wrong

� because the memcpy can overwrite data from the source, which it 
would need to use later

● Same thing can happen with vector operations
● To vectorize codes that deal with two arrays, need to know 

they don’t overlap
● We can mark this using the restrict keyword
● int* restrict A, int* restrict B

� The only way to obtain pointers from A’s memory region is by 
offsetting from A

� Thus A and B cannot overlap because there are no (non UB) 
offsets into each other



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

What can a compiler auto-vectorize?

● “Pure” (not interdependent) loop iterations
� Dependence between loop iterations

● Reductions
� Sum or product of contiguous memory: can detect the result 

variable is used for reduction
● Inductions

� A[i] = i;
● If Statements

� Certain if statements can be converted to branchless code
● Stride

� A[i] += B[i * 4];
● When restrict is not known

� Generates both vector and scalar code paths
� Tests for overlap at runtime



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Associativity of Reductions

● 1 + (2 + 3) == (1 + 2) + 3
● 0.1 + (0.2 + 0.3) != (0.1 + 0.2) + 0.3

● Floating point addition is not associative. This means order 
matters.

● Vector operations do not add the values in the same order 
as a scalar loop.

● -O3 has to produce code that behaves exactly the same as 
-O0, so the result might be different

● For float: Need the -ffast-math flag to tell the compiler we’re 
ok with this.



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

USEFUL INTRINSICS



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Alignment Hint

void *__builtin_assume_aligned(const void *arg, 
size_t align);
Returns its first argument and allows the compiler to assume 
that the returned pointer is at least align bytes aligned.

// x is at least 16 byte aligned
void *x = __builtin_assume_aligned(arg, 16);

// (char *) x - 8 is 32 byte aligned
void *x = __builtin_assume_aligned(arg, 32, 8);



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Other Bit Manipulations

uint64_t __builtin_rotateleft64(uint64_t x, bits_t amt);
uint64_t __builtin_rotateright64(uint64_t x, bits_t amt);

uint64_t __builtin_bitreverse64(uint64_t x);
uint64_t __builtin_bswap64(uint64_t x);

bits_t __builtin_popcountll(uint64_t x);
bits_t __builtin_clzll(uint64_t x);
bits_t __builtin_ctzll(uint64_t x);



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Parallel Bit Extraction

#include <immintrin.h>
uint64_t _pext_u64(uint64_t s1, uint64_t mask);
Transfer either contiguous or non-contiguous bits in the first 
source operand to contiguous low order bit positions in the 
destination according to the mask values.



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Packed Shift

#include <immintrin.h>
__m128i _mm_sll_epi64(__m128i reg, __m128i count);

Shift the two 64 bit numbers packed in reg left by count.



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Pre Fetching!

__builtin_prefetch (const void *addr[, rw[, 
locality]])

Takes:
● Addr to prefetch from
● Read mode or write mode
● Locality (L1 /L2/ L3/ auto)



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Intel Intrinsics Guide

Intel® Intrinsics Guide

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html


© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

CODING TIME!

17


