Software Performance Engineering

PER ORDER OF SPE

Recitation 1.4

Sophia Sun
Tuesday, Sep 23, 2025

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Some due dates

- Homework 3 is released, due Sep 29, next Monday.

- Project 1 beta is due today!
« Submit your code to the GitHub repo
. Submit your writeup to both Gradescope and your repo

- Reach tier 20 to get at least a B grade for beta.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Beta Writeup

- A brief overview of your design.

. The general state of completeness and expected
performance of your implementation.

- Any additional information that you feel would be helpful to
the staff in understanding your submission.

- An acknowledgment of any help received from course staff,
classmates on Piazza, or publicly available materials.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Weekly Report

. Please remember to submit your weekly report every week.
» Class contribution: 5 points towards final

. Time adjustment (starting this Friday):
1 Release: Friday morning, 10am
o Due: next Monday evening, S5pm

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Optimization tips

- What we covered in recitations so far:
o recitation 1.1: from bit rotation to block rotation
o recitation 1.2: in-block rotation (row-column-row algorithm)
0 recitation 1.3: divide-and-conquer approach for RCR

. Bit hacks
- Bently rules:
n Caching

And so many more!
1 Precomputation y

1 Sub-expression elimination
o Loop unrolling
0 Function inlining

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Resources

. Go to the course calendar to find all the lecture and
recitation slides, and the project due dates.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

https://software-performance-engineering.github.io/fall25/calendar/

PER ORDER OF SPE

PERFORMANCE ENGINEERING

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Performance Engineering

code,

measure,
© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Basic Performance-Engineering Workflow

1. Measure the performance of Program A.

2. Make a change to Program A to produce a
hopefully faster Program A".

3. Measure the performance of Program A".
4. If A" beats A, setA = A".
5. If Ais still not fast enough, go to Step 2. 7

1.2 12

1 1

0.8 0.8
0.6 0.6
0.4 0.4

0.2 0.2

0 0
1234567 891011121314151617181920 1234567 8 91011121314151617181920

If you can’t measure performance reliably,
it is hard to make many small changes that add up

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 10

Example: Timing a Code for Sortlng

#include <stdio.h> /J lerary for clock_gettime()

#tinclude <time.h>

void my_sort(double *A, int % Sorting routine to be timed. J

void fill(double *A, int n

<
int main() { Auxiliary routine for filling array
int max = 4 * 1000 * 1000; .
oy with random numbers.)
int step = 20 * 1000; r
double Almax]; 4‘//' ﬂ\\
struct timespeeegtass o= Used by clock_gettime():

struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

35 J

for (int n=min; n<max; n+=step) {
FLILLGA,)R

clock_gettime (CLOCK_MONOTONIC, &start
my_sort(A, n);
clock_gettime(CLOCK_MONOTONIC, &end);

double tdiff = (end.tv_sec -
start.tv_sec)
+ le-9*x(end. tv_nsec -
start.tv_nsec);
printf("size %d, time %f\n", n, tdiffz;;7

)

- 0
meTuTrTroy

}
© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Example: Timing a Code for Sorting

#include <stdio.h>
#tinclude <time.h>

void my_sort(double *A, int n);
void fill(double *A, int n);

int main() {
int max = 4 * 1000 * 1000;
int min = 1;
int step = 20 * 1000;
double A[max];
struct timespec start, end;

for (int n=mi
Fill(A, n);

Max; n+=step) {

clock_gettime(Cl OCK MO

Loop over arrays of
increasing length.

Array randomly filled. }

—l . .
Measure time before sorting. }

<7y

my_sort(A, n);

double tdiff = (end.tv_sec -
start.tv_sec)
+ le-9*%(end. tv_nsec -
start.tv_nsec);

i

- 0
meTuTrTroy

}
© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

clock_gettime(CLOCK_MONOTONIC, &end); =~

printf("size %d, time %f\n", n, tdiffz;;7

P
 Measure time after sorting. }

Compute
elapsed time.

12

Running Times for Sorting

60
» 50 Measured running time
'g Best fit to
8 40 — Best fit to
(0]
n
(0))
£
(®)]
£
c 10 —
c
-}
X -
-10 | | ! | |
0 0.5e6 1e6 1.5e6 2e6 2.5e6

array size n

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

3eb

3.5e6

4e6

13

Running Times for Sorting

2238
.........
..............
xxxxxxxxxxxxxx

X ceseseat®s?
eeeesses XX IIIIO Y

.......
................

60

P ay X

U) —

5 0,

[

S 4w- °

O

(7))

o

£

o

c

c 10 -

C

-]

1) ——
_10 |

0 0.5¢6

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

1e6 1.5e6 2e6 2.5e6 3eb 3.5e6
array size n

4e6

14

Dynamic Voltage and Frequency Scaling

DVFS is a technique to dynamically trade power for performance
by adjusting the clock frequency and supply voltage to
transistors

- Reduce operating frequency if chip is too hot or otherwise to save

power.
* Reduce voltage if frequency is reduced.
 Turbo Boost increases frequency if the chip is cool.

[Power oc CV/?f }

C = dynamic capacitance = roughly area % activity (how many bits

toggle)
V = supply voltage
f = clock frequency

Changing frequency and voltage has a cubic effect on power (and heat)

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 16

Today’s Topic

How can one reliably measure
the performance of software?

i S

We'll start with What Statistics
and Metrics To Measure

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

17

WHAT ST1ATISTICS AND METRICS TO
MEASURE

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

19

Summary Statistics and Noise

Suppose that you measure the performance of a deterministic
program 100 times* with the same input on a computer with some
interfering background noise.

What statistic best represents the raw performance of the
software?

J mean
median
maximum

D OO

minimum

* we start it cold 100 times to eliminate any kind of caching effect from previous

runs
© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

22

Summary Statistics and Noise

Suppose that you measure the performance of a deterministic
program 100 times* with the same input on a computer with some
interfering background noise.

What statistic best represents the raw performance of the
software?

d mean

d median
d maximum
A minimum

Minimum does the best at noise rejection, because we expect
that any measurements higher than the minimum are due to

noise.
© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

23

Summarizing Ratios

1 9 3
2 8 2
3 2 20
4 10 2

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

24

Summarizing Ratios

3.00
2 8 2 4.00
3 2 20 0.10
5.00

Conclusion
Program A’ is > 3 times better than A

WRONG!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

25

Turn the Comparison Upside-Down

N e S

1 3.00 0.33

2 8 2 4.00 0.25

3 2 20 0.10 10.00

y L
Paradox

A’ is 3.03x faster than A & Ais 2.70x faster than
A

Observation
The arithmetic mean of A/A’ is NOT the inverse of the arithmetic mean of A/A

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

26

Geometric Mean

3.00 0.33
2 8 2 4.00 0.25
3 2 20 0.10 10.00

4 10

Formula

n 1/n

N
| I a; = Va,a, - a,

1=

Observation
The geometric mean of A/A’ is the inverse of the geometric mean of A/A

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 27

Selecting among Summary Statistics

Given server, service as many
requests as possible

- Arithmetic mean
- CPU utilization

Most cloud service requests
are satisfied within 100 ms

- 90th percentile
- Wall-clock time

Best game-playing Al

- Arithmetic mean
- Win rate

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Fit into a machine with 100 MB of memory
- Maximum
- Memory use
Support frequent use on a mobile device
- Arithmetic mean
- Energy use or CPU utilization
Most environmentally friendly

- Arithmetic mean
- Carbon footprint

Meet a customer service-level agreement
(SLA)

- Weighted combo of statistics
- Multiple metrics

28

CODING TIME BEFORE BETA DUE!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

29

Optimization tips

- Always take a shot if you have an ideal
- Decide for yourself: what works for others may not work for

you (even an idea from a course staff!)
0 a course staff’'s suggestion is also not the only solution.
. It's not guaranteed that an optimization idea will actually

make your code run faster.
o if that happens, think about why.

- Take one step at a time to make debugging easier.
. Write comments, so you won't forget what you're doing or
planning to do a week later.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

