
Software Performance Engineering

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

Recitation 1.4

Sophia Sun
Tuesday, Sep 23, 2025

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Some due dates

● Homework 3 is released, due Sep 29, next Monday.

● Project 1 beta is due today!
● Submit your code to the GitHub repo
● Submit your writeup to both Gradescope and your repo

● Reach tier 20 to get at least a B grade for beta.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Beta Writeup

● A brief overview of your design.
● The general state of completeness and expected

performance of your implementation.
● Any additional information that you feel would be helpful to

the staff in understanding your submission.
● An acknowledgment of any help received from course staff,

classmates on Piazza, or publicly available materials.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Weekly Report

● Please remember to submit your weekly report every week.
● Class contribution: 5 points towards final

● Time adjustment (starting this Friday):
� Release: Friday morning, 10am
� Due: next Monday evening, 5pm

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Optimization tips

● What we covered in recitations so far:
� recitation 1.1: from bit rotation to block rotation
� recitation 1.2: in-block rotation (row-column-row algorithm)
� recitation 1.3: divide-and-conquer approach for RCR

● Bit hacks
● Bently rules:

� Caching
� Precomputation
� Sub-expression elimination
� Loop unrolling
� Function inlining

And so many more!

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Resources

● Go to the course calendar to find all the lecture and
recitation slides, and the project due dates.

https://software-performance-engineering.github.io/fall25/calendar/

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

PERFORMANCE ENGINEERING

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Performance Engineering
think, code,

run,measure,
9

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

1. Measure the performance of Program A.
2. Make a change to Program A to produce a

hopefully faster Program A′.
3. Measure the performance of Program A′.
4. If A′ beats A, set A = A′.
5. If A is still not fast enough, go to Step 2.

If you can’t measure performance reliably,
it is hard to make many small changes that add up

Basic Performance-Engineering Workflow

10

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

#include <stdio.h>
#include <time.h>

void my_sort(double *A, int n);
void fill(double *A, int n);

int main() {
 int max = 4 * 1000 * 1000;
 int min = 1;
 int step = 20 * 1000;
 double A[max];
 struct timespec start, end;

 for (int n=min; n<max; n+=step) {
 fill(A, n);

 clock_gettime(CLOCK_MONOTONIC, &start);
 my_sort(A, n);
 clock_gettime(CLOCK_MONOTONIC, &end);

 double tdiff = (end.tv_sec -
start.tv_sec)
 + 1e-9*(end.tv_nsec -
start.tv_nsec);
 printf("size %d, time %f\n", n, tdiff);
 }
 return 0;
}

Library for clock_gettime()

Sorting routine to be timed.

Auxiliary routine for filling array
with random numbers.

Used by clock_gettime():
struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
};

Inspired by a study
due to Sivan Toledo.

Example: Timing a Code for Sorting

11

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

#include <stdio.h>
#include <time.h>

void my_sort(double *A, int n);
void fill(double *A, int n);

int main() {
 int max = 4 * 1000 * 1000;
 int min = 1;
 int step = 20 * 1000;
 double A[max];
 struct timespec start, end;

 for (int n=min; n<max; n+=step) {
 fill(A, n);

 clock_gettime(CLOCK_MONOTONIC, &start);
 my_sort(A, n);
 clock_gettime(CLOCK_MONOTONIC, &end);

 double tdiff = (end.tv_sec -
start.tv_sec)
 + 1e-9*(end.tv_nsec -
start.tv_nsec);
 printf("size %d, time %f\n", n, tdiff);
 }
 return 0;
}

Loop over arrays of
increasing length.

Measure time before sorting.

Sort.

Measure time after sorting.

Compute
elapsed time.

Array randomly filled.

Example: Timing a Code for Sorting

12

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Running Times for Sorting

array size n

Measured running time
Best fit to c1⋅ n lg n
Best fit to c2 ⋅ n

0.5e6 1e6 1.5e6 2e6 2.5e6 3e6 3.5e6 4e6

60

50

40

30

20

10

0R
un

ni
ng

 ti
m

e
(s

ec
on

ds
) ×

●

●

–10
0

13

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Running Times for Sorting

array size n

Measured running time
Best fit to c1⋅ n lg n
Best fit to c2 ⋅ n

0.5e6 1e6 1.5e6 2e6 2.5e6 3e6 3.5e6 4e6

60

50

40

30

20

10

0R
un

ni
ng

 ti
m

e
(s

ec
on

ds
) ×

●

●

–10
0

What is going on?

14

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

• Reduce operating frequency if chip is too hot or otherwise to save
power.

• Reduce voltage if frequency is reduced.
• Turbo Boost increases frequency if the chip is cool.

Dynamic Voltage and Frequency Scaling

16

DVFS is a technique to dynamically trade power for performance
by adjusting the clock frequency and supply voltage to
transistors

Power ∝ CV2f

C = dynamic capacitance ≈ roughly area × activity (how many bits
toggle)
V = supply voltage
f = clock frequency

Changing frequency and voltage has a cubic effect on power (and heat)

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Today’s Topic

How can one reliably measure
the performance of software?

17

We’ll start with What Statistics
and Metrics To Measure

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

WHAT STATISTICS AND METRICS TO
MEASURE

19

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Summary Statistics and Noise

Suppose that you measure the performance of a deterministic
program 100 times* with the same input on a computer with some
interfering background noise.

22

What statistic best represents the raw performance of the
software?
❑ mean
❑ median
❑ maximum
❑ minimum

* we start it cold 100 times to eliminate any kind of caching effect from previous
runs

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Summary Statistics and Noise

✓

Minimum does the best at noise rejection, because we expect
that any measurements higher than the minimum are due to
noise.

23

Suppose that you measure the performance of a deterministic
program 100 times* with the same input on a computer with some
interfering background noise.

What statistic best represents the raw performance of the
software?
❑ mean
❑ median
❑ maximum
❑ minimum

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Summarizing Ratios
Trial Program A Program A’
1 9 3
2 8 2
3 2 20
4 10 2
Mean 7.25 6.75

24

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Summarizing Ratios
Trial Program A Program A’ A/A’
1 9 3 3.00
2 8 2 4.00
3 2 20 0.10
4 10 2 5.00
Mean 7.25 6.75 3.03

Conclusion
Program A’ is > 3 times better than A

WRONG!
25

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Turn the Comparison Upside-Down
Trial Program A Program

A’
A/A’ A’/A

1 9 3 3.00 0.33
2 8 2 4.00 0.25
3 2 20 0.10 10.00
4 10 2 5.00 0.20
Mean 7.25 6.75 3.03 2.70

Paradox
A’ is 3.03x faster than A & A is 2.70x faster than
A’

Observation
The arithmetic mean of A/A’ is NOT the inverse of the arithmetic mean of A’/A

26

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Geometric Mean

Formula

Observation
The geometric mean of A/A’ is the inverse of the geometric mean of A’/A

n

27

Trial Program A Program A’ A/A’ A’/A
1 9 3 3.00 0.33
2 8 2 4.00 0.25
3 2 20 0.10 10.00
4 10 2 5.00 0.20
Mean (a) 7.25 (a) 6.75 (g) 1.57 (g) 0.64

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Selecting among Summary Statistics

Given server, service as many
requests as possible
∙ Arithmetic mean
∙ CPU utilization

Most cloud service requests
are satisfied within 100 ms
∙ 90th percentile
∙ Wall-clock time

Best game-playing AI
∙ Arithmetic mean
∙ Win rate

28

Fit into a machine with 100 MB of memory
∙ Maximum
∙ Memory use

Support frequent use on a mobile device
∙ Arithmetic mean
∙ Energy use or CPU utilization

Most environmentally friendly
∙ Arithmetic mean
∙ Carbon footprint

Meet a customer service-level agreement
(SLA)
∙ Weighted combo of statistics
∙ Multiple metrics

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

CODING TIME BEFORE BETA DUE!

29

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Optimization tips

● Always take a shot if you have an idea!
● Decide for yourself: what works for others may not work for

you (even an idea from a course staff!)
� a course staff’s suggestion is also not the only solution.

● It’s not guaranteed that an optimization idea will actually
make your code run faster.
� if that happens, think about why.

● Take one step at a time to make debugging easier.
● Write comments, so you won’t forget what you’re doing or

planning to do a week later.

