
Software Performance Engineering

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

Recitation 1.3

Sophia Sun
Tuesday, Sep 16, 2025

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Some due dates

● Homework 2 is due yesterday
● Homework 3 will release this Thursday
●

● Project 1 beta: September 23, Tuesday (Next Tueday)
● Project 1 final: October 2, Thursday

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

CODING WARM UP & QA TIME

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

BIT HACKS

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Tips for Bit Manipulation

● Use the appropriate literals
� A plain 1 is a 32-bit integer. 1 << 63 can give unexpected results.
� 1ULL means 1 unsigned long long which is uint64_t

◆ 00000000 00000000 00000000 00000000
◆ 00000000 00000000 00000000 00000001

● Never shift by more than the number of bits in the number
� ((uint64_t) i) >> 64 is undefined behavior (UB)

● Never shift by a negative amount
� Also UB

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Practice Question

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Why?

1. We know x -1 will find the first set bit on x, when scanning from
the least significant bit and invert all bits till the found bit.
Ex: 11001000 – 1 = 11000111

2. Now, let the number be x= abcd100…
3. x – 1 = abcd011….
4. x & x -1 = abcd000…
5. The above number will be 0 if abcd are all 0.
6. Which means x must be of the form 00..010… (only 1 set bit)
7. Which represents all and only powers of 2 or 0

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Practice Question

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Practice Question

Trace: Take x = 2 => r =1
r = 100…01
r = 11100….01
r = 111111…001
.
.
r = 1111….1
r++ will result in 0

We can easily see that if any bit in x-1 is 1, then the final r will be 0.
Otherwise, the final r is 1.
So, it tests if x-1 is 0, that is if x is 1.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Practice Question

Trace: Take x = 2 => r =1
r = 100…01
r = 11100….01
r = 111111…001
.
.
r = 1111….1

r++ will result in 0
We can easily see that if any bit in x-1 is 1, then r is 0.
Otherwise, r is 1
So, it tests if x-1 is 0, that is if x is 1.

A – Never
B – Sometimes
C – True
D - True

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

PROJECT 1: CONTINUE

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 N J F B

2 O K G C

3 P L H D

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

How to implement row rotation?

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

How to implement column rotation?

Input: N × N matrix of bits, stored in row-major order.
Goal: Circularly rotate ith column of bits up i rows.

In the example that follows, we have N = 32. Each row
is stored in a 32-bit word, with column 0 in the
most-significant bit.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Naive approach
const uint32_t N = 32;
const uint32_t mask = 1 << (N-1);
uint32_t A[N];
for (int i = O; i < N; i++){
 uint32_t col = O;
 // gather bits in column i
 for (int j = O; j < N; j++)
 col = col | (((A[j] << i) & mask) >> j);
 // rotate bits in column i
 col = (col << i) | (col >> (N - i));
 // put column i back
 for (int j = O; j < N; j++)
 A[j] = (A[j] & ~(mask >> i)) |
 (((col << j) >> i) & (mask >> i));
}

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

Rotate columns 2 & 3 down by 2, same as rotate up by 2

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3

0 A B K L

1 E F O P

2 I J C D

3 M N G H

Rotate columns 2 & 3 down by 2, same as rotate up by 2

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3

0 A B K L

1 E F O P

2 I J C D

3 M N G H

Rotate columns 1 & 3 down by 1, same as rotate up by 3

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3

0 A N K H

1 E B O L

2 I F C P

3 M J G D

Rotate columns 1 & 3 down by 1, same as rotate up by 3

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3

0 A N K H

1 E B O L

2 I F C P

3 M J G D

Rotate all columns down by 1, same as rotate up by 3

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3

0 M J G D

1 A N K H

2 E B O L

3 I F C P

Rotate all columns down by 1, same as rotate up by 3

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3

0 M J G D

1 A N K H

2 E B O L

3 I F C P

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

Result: rotate all columns c down by c + 1, same as rotate up by N - (c + 1)

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-conquer approach
uint32_t A[32], B[32]; // use B as scratch space

// rotate columns 16...31 down 16 positions
uint32_t stay_mask = 0xFFFF0000; // columns that don't move

for (int j = 0; j < 32; j++)
 B[j] = (A[j] & stay_mask) | (A[(j-16+32) % 32] & ~stay_mask);

// rotate columns 8..15 and 24...31 down 8 positions
stay_mask = 0xFF00FF00;

for (int j = 0; j < 32; j++)
 A[j] = (B[j] & stay_mask) | (B[(j-8+32) % 32] & ~stay_mask);

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Full steps

32-bit matrix example

https://docs.google.com/spreadsheets/d/1rZNr-KfwsVrZl2BJrEe339wHae73p2kFilpW8ykUQig/edit?usp=sharing

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

CODING TIME!

30

