Software Performance Engineering

PER ORDER OF SPE

Recitation 1.3

Sophia Sun
Tuesday, Sep 16, 2025

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Some due dates

. Homework 2 is due yesterday
. Homework 3 will release this Thursday

- Project 1 beta: September 23, Tuesday (Next Tueday)
- Project 1 final: October 2, Thursday

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

CoDING WARM UP & QA TIME

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

BIT HACKS

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Tips for Bit Manipulation

- Use the appropriate literals
o Aplain 1 is a 32-bit integer. 1 << 63 can give unexpected results.
o 1ULL means 1 unsigned long long which is uint64 t
. 00000000 00000000 00000000 00000000
. 00000000 00000000 00000000 00000001
- Never shift by more than the number of bits in the number
1 ((uinte4_t) i) >> 64 is undefined behavior (UB)
- Never shift by a negative amount
o Also UB

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Practice Question

What does the following code do? Operator | Description

2 AND
uint64_t bithack_1(uint64_t x) { | OR
return (x & (x - 1)) == 0; A XOR (exclusive OR)
s NOT (one’s complement)

<< shift left

A Returns the index of the lowest 1-bit in x. o e

B Returns a 1 in the position of the least-significant 1 in x and a 0 in all other
bit positions.

C Returns 1 if x is a power of 2, and 0 otherwise.
D Returns 1 if x is 0 or a power of 2, and 0 otherwise.
E Returns 1 if x is greater than 1, and 0 otherwise.

F None of the above.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Why?

1. We know x -1 will find the first set bit on x, when scanning from
the least significant bit and invert all bits till the found bit.

Ex: 11001000 — 1 = 11000111

Now, let the number be x=abcd100...

x —1 =abcd011....

X & x -1 = abcd000...

The above number will be 0O if abcd are all 0.

Which means x must be of the form 00..010... (only 1 set bit)
Which represents all and only powers of 2 or O

NOoO O~ 0N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Practice Question

This bit trick resembles the bit trick from lecture for computing 271 but all Operator | Description

right shifts in that trick have been replaced with rightward bit rotations. For ex- & AND

ample, OXDEADBEEF >> 12 yields OxOOODEADB, and rightrotate (OxDEADBEEF, [OR

12) produces OXEEFDEADB. For each of the assertions in the following the code, A XOR (exclusive OR)
determine if the assertion would always succeed, if the assertion would always . NOT (one’s complement)
fail, or if the assertion would sometimes succeed and sometimes fail. ok shift left

void bithack(uint64_t x) { >2 sk ek

uinté4_t r = x - 1;

r |= rightrotate(r, 1);
r |= rightrotate(r, 2);
r |= rightrotate(r, 4);
r |= rightrotate(r, 8);
r |= rightrotate(r, 16);
r |= rightrotate(r, 32);
2 i

assert(r < 0); // A.
assert(r < 1); // B.
assert(r < 2); // C.
assert(r < 4); // D.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Practice Question

This bit trick resembles the bit trick from lecture for computing 2M871 but all Felaeieis IR

right shifts in that trick have been replaced with rightward bit rotations. For ex- & AND
ample, OXDEADBEEF >> 12 yields OxOOODEADB, and rightrotate (OxDEADBEEF, | OR
12) produces OXEEFDEADB. For each of the assertions in the following the code, A XOR (exclusive OR)
determine if the assertion would always succeed, if the assertion would always - NOT (one’s complement)
fail, or if the assertion would sometimes succeed and sometimes fail. G shift left
3 2 ; >> shift right
void bithack(uint64_t x) { Trace: Take x = 2 =>r =1
uinté4_t r = x - 1; _
r |= rightrotate(r, 1); r=100...01
r |= rightrotate(r, 2); r=11100....01
r |= rightrotate(r, 4); r=111111...001
r |= rightrotate(r, 8);
r |= rightrotate(r, 16);
r |= rightrotate(r, 32);)
Tt r=1111....1
r++ will result in O
assert(r < 0); // A.
SERERECE S 12 W Be We can easily see that if any bit in x-1 is 1, then the final r will be 0.
assert(xr < 2); // C.) . .
T ' Otherwise, the final ris 1.
> So, ittests if x-1is 0, thatis if x is 1.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Practice Question

This bit trick resembles the bit trick from lecture for computing 2M871 but all Felaeieis IR

right shifts in that trick have been replaced with rightward bit rotations. For ex- & AND
ample, OXDEADBEEF >> 12 yields OxOOODEADB, and rightrotate (OxDEADBEEF, | OR
12) produces OXEEFDEADB. For each of the assertions in the following the code, = XOR (exclusive OR)
determine if the assertion would always succeed, if the assertion would always - NOT (one’s complement)
fail, or if the assertion would sometimes succeed and sometimes fail. oy shift left
. . ; >> shift right
void bithack(uint64_t x) { Trace: Take x = 2 => r =1
uinté64_t r = x - 1; _
r |= rightrotate(r, 1); r=100...01
r |= rightrotate(r, 2); r=11100....01
r |= rightrotate(r, 4); r=111111...001
r |= rightrotate(r, 8); A — Never
r |= rightrotate(r, 16); . B — Sometimes
§++; rightrotate(r, 32); f= 11111 C — True
D - True
assert(r < 0); // A. r++ will resultin 0
SERERECE S 12 W Be We can easily see that if any bit in x-1is 1, then ris 0.
assert(xr < 2); // C. . ;
assert(r < 4); // D. Otherwise, ris 1
> So, ittests if x-1is 0, thatis if x is 1.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

PROJECT 1: CONTINUE

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1

0 1
0 rotate row rleft by r

o M |

0 1 2 3
ol A B | C D "1 N J
" E F G H 2 | 0 K
2 J K L 5 5 .

3| M N o) P

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

How to implement row rotation?

Operator | Description |

& AND

| OR

A XOR (exclusive OR)

~ NOT (one’s complement)

<< shift left
>> shift right

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

How to implement column rotation?

Input: N x N matrix of bits, stored in row-major order.
Goal: Circularly rotate ith column of bits up i rows.

a00 aOl a02 a03 a00 all a22 a33

alO a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33 a30 a01 a12 a23

In the example that follows, we have N = 32. Each row
is stored in a 32-bit word, with column 0 in the
most-significant bit.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Naive approach

const uint32 t N = 32;
const uint32 t mask = 1 << (N-1);

uint32 t A[N]; -
for (int i = 0; i < N; i++){ WOIZ'I(.
uint32 t col = 0; O(N?).

// gather bits in column i
for (int j = 0; j < N; j++)

col = col | (((A[]] << i) & mask) >> j);
// rotate bits in column i
col = (col << i) | (col >> (N - i));
// put column i back
for (int j = 0; j < N; j++)

A[3] = (A[3] & ~(mask >> i)) |

(((col << j) >> i) & (mask >> 1i));
}

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3
0 A B C D
L E F G H
2 J K L
3 M N 0 P

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3
0 A B C D
1 E F G H
2 J K L
3 M N 0 P

Rotate columns 2 & 3 down by 2, same as rotate up by 2

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3
0 A B K L
1 E F 0 P
2 J C D
3 M N G H

Rotate columns 2 & 3 down by 2, same as rotate up by 2

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3
0 A B K L
! E F O P
2 J C D
3 M N G H

Rotate columns 1 & 3 down by 1, same as rotate up by 3

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3
0 A N K H
1 E B 0 L
2 F C P
3 M J G D

Rotate columns 1 & 3 down by 1, same as rotate up by 3

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3
0 A N K H
1 E B o) L
2 F C P
3 M J G D

Rotate all columns down by 1, same as rotate up by 3

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3
0 M J G D
1 A N K H
? E B o) L
3 F C P

Rotate all columns down by 1, same as rotate up by 3

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-Conquer approach

0 1 2 3 0 1 2
0 A B C D 0 M J G
1 E F G H ! A N K
2 | J K L 2 E B 0]
3 M N O P 3 | F C

Result: rotate all columns ¢ down by ¢ + 1, same as rotate up by N - (c + 1)

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-conquer approach

uint32 t A[32], B[32]; // use B as scratch space

// rotate columns 16...31 down 16 positions
uint32 t stay mask = OxFFFFO0OO; // columns that don't move

for (int 7 = 0; j < 32; j++)
B[j] = (A[j] & stay mask) | (A[(j-16+32) % 32] & ~stay _mask);

// rotate columns 8..15 and 24...31 down 8 positions
stay mask = OxFFOOFFQ0;

[Work: ©(N1g N)]
for (int § = @; j < 32; j++)
A[j] = (B[j] & stay mask) | (B[(j-8+32) % 32] & ~stay_mask);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Full steps

32-bit matrix example

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

https://docs.google.com/spreadsheets/d/1rZNr-KfwsVrZl2BJrEe339wHae73p2kFilpW8ykUQig/edit?usp=sharing

CoDING TIME!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

30

