
Software Performance Engineering

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

Recitation 1.2

Sophia Sun
Tuesday, Sep 9, 2025

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

COURSE LOGISTICS

2

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Homework 2 is released!

● You have a checkoff part and the actual homework part
● Checkoff is due: tonight 10 pm
● Homework 2 is due: Monday September 15

● Project 1 beta: September 23, Tuesday
● Project 1 final: October 2, Thursday

● Reach tier 25 for Project 1 beta to get at least B grade!

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Gradescope

● For write-ups, when you make your submission, please link
each question to the page that you answer is on.

● Eg: for question 1, your answer is on page 1 and 2. For
question 2, your answer is on page 2 and 3.

● It is ok to link multiple pages to one question!

● This makes it easier for TA to clearly see your submission for
every question and don’t miss anything!

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Gradescope

● Make sure you follow the handout carefully and submit all
the required materials.

● Write-up 12: Compile again with make clean; make
LOCAL=1 UBSAN=1. What do you see when you run
./is_power_of_two? Paste the error that the sanitizer throws.
In addition, explain where and why this error happened. Fix
the error you found and explain your fix. Finally, compile and
run the program again and verify that the output is correct.
Paste your program output.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

CODING WARM UP & QA TIME

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

PROJECT 1: CONTINUE

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

First step: block-wise rotation

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Next step: in-block rotation

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Next step: in-block rotation

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

One possible approach: row-column-row

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 B C D A

1 E F G H

2 I J K L

3 M N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 B C D A

1 E F G H

2 I J K L

3 M N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 B C D A

1 G H E F

2 I J K L

3 M N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 B C D A

1 G H E F

2 I J K L

3 M N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 B C D A

1 G H E F

2 L I J K

3 M N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 B C D A

1 G H E F

2 L I J K

3 M N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 B C D A

1 G H E F

2 L I J K

3 M N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

Rotate by 4 = no change

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 B C D A

1 G H E F

2 L I J K

3 M N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M C D A

1 B H E F

2 G I J K

3 L N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M C D A

1 B H E F

2 G I J K

3 L N O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I D A

1 B N E F

2 G C J K

3 L H O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I D A

1 B N E F

2 G C J K

3 L H O P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 B N J F

2 G C O K

3 L H D P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 B N J F

2 G C O K

3 L H D P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 B N J F

2 G C O K

3 L H D P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 B N J F

2 G C O K

3 L H D P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 N J F B

2 G C O K

3 L H D P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 N J F B

2 G C O K

3 L H D P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 N J F B

2 O K G C

3 L H D P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 N J F B

2 O K G C

3 L H D P

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 N J F B

2 O K G C

3 P L H D

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

0 1 2 3

0 M I E A

1 N J F B

2 O K G C

3 P L H D

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

3 M N O P

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

How to implement row rotation?

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

How to implement column rotation?

Input: N × N matrix of bits, stored in row-major order.
Goal: Circularly rotate ith column of bits up i rows.

In the example that follows, we have N = 32. Each row
is stored in a 32-bit word, with column 0 in the
most-significant bit.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Naive approach
const uint32_t N = 32;
const uint32_t mask = 1 << (N-1);
uint32_t A[N];
for (int i = O; i < N; i++){
 uint32_t col = O;
 // gather bits in column i
 for (int j = O; j < N; j++)
 col = col | (((A[j] << i) & mask) >> j);
 // rotate bits in column i
 col = (col << i) | (col >> (N - i));
 // put column i back
 for (int j = O; j < N; j++)
 A[j] = (A[j] & ~(mask >> i)) |
 (((col << j) >> i) & (mask >> i));
}

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞PER ORDER OF SPE

CODING TIME!

45

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

More hints

● Loop unrolling
● Function inlining
● Algebraic identities
● Tiling
● Prefetching
● ……

