Software Performance Engineering

PER ORDER OF SPE

Recitation 1.2

Sophia Sun
Tuesday, Sep 9, 2025

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

CouRrseE LoaisTICS

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Homework 2 is released!

- You have a checkoff part and the actual homework part
« Checkoff is due: tonight 10 pm
- Homework 2 is due: Monday September 15

- Project 1 beta: September 23, Tuesday
- Project 1 final: October 2, Thursday

Reach tier 25 for Project 1 beta to get at least B grade!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Gradescope

. For write-ups, when you make your submission, please link
each question to the page that you answer is on.

. Eg: for question 1, your answer is on page 1 and 2. For
guestion 2, your answer is on page 2 and 3.

. Itis ok to link multiple pages to one question!

- This makes it easier for TA to clearly see your submission for
every question and don’t miss anything!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Gradescope

- Make sure you follow the handout carefully and submit all
the required materials.

. Write-up 12: Compile again with make clean; make
LOCAL=1 UBSAN=1. What do you see when you run
Jis_power_of two? Paste the error that the sanitizer throws.
In addition, explain where and why this error happened. Fix
the error you found and explain your fix. Finally, compile and
run the program again and verify that the output is correct.
Paste your program output.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

CoDING WARM UP & QA TIME

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

PROJECT 1: CONTINUE

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

29 void rotate bit matrix(uint8 t *img, const bits t N) {

3 / Get the number of bytes per row in "~ img

31 const uint32 t row _size = bits to bytes(N);

32

33 uint32_t w, h, quadrant;

34 for (h =0; h <N/ 2; ht+) {

35 for (w=0; w< N/ 2; wt) {

36 uint32. t i =w, j = h;

37 uint8 t tmp bit = get bit(img, row size, i, j);

38

39 // Move a bit from one quadrant to the next and do this
40 // for all 4 quadrants of the “img

41 for (quadrant = 0; quadrant < 4; quadrant++) {

42 uint32 t next 1 = N - j - 1, next j = i;

43 uint8 t save bit = tmp bit;

a4

45 tmp bit = get bit(img, row size, next i, next j);
46 set bit(img, row size, next i, next j, save bit);
47

48 i> and " wi

49 the "next_i” and "next_j

50 i = next i;

51 j = next_j;

52 }

53 }

54 }

55

56 return;

© 2008-2024 by the MIT 6.172 and }

First step: block-wise rotation

=HMm >
Z T w
OXMOO
U T

(a) Original image

A
H
L

U HMX<
= G T1 00
O XM O

(b) Image after translat-
ing blocks

Next step: in-block rotation

M B CA =B C>
EFGH EFGH
I J KL I J KL
P NO TNO

(b) Image after translat- (c) Image after rotating

ing blocks blocks

Next step: in-block rotation

i V_

apo) 4o1 42 |403 azo| 401 402 (400
aip 411 412 413 aip 411 412 413
dao 4z1 4y 43 Ao 4z1 4y a3
azp| 431 43z 433 az3| 431 4z 403
(a) before apg-rymg-rytucl%ermutation (b) after applying cyclic permutation

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

One possible approach: row-column-row

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1
0 rotate row rleft by r

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1

0 rotate row rleft by r ’ 1
0 A B
1 E F
2 | J
3 M N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate rowr left by r + 1
0 rotate column c down by ¢ + 1
0 rotate row rleft by r

0 A B
! E F
2 I J
3 M N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate rowr left by r + 1
0 rotate column c down by ¢ + 1
0 rotate row rleft by r

0 B C
! E F
2 I J
3 M N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate rowr left by r + 1
0 rotate column c down by ¢ + 1
0 rotate row rleft by r

0 B C
! E F
2 I J
3 M N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate rowr left by r + 1
0 rotate column c down by ¢ + 1
0 rotate row rleft by r

0 B C
! G H
2 I J
3 M N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate rowr left by r + 1
0 rotate column c down by ¢ + 1
0 rotate row rleft by r

0 B C
! G H
2 I J
3 M N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:

0 rotate rowr left by r + 1
0 rotate column c down by ¢ + 1

0 rotate row rleft by r ’ 1
0 B C
L G H
2 L |
3 M N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate rowr left by r + 1
0 rotate column c down by ¢ + 1
0 rotate row rleft by r

0 B C
! G H
2 L I

3 M N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate rowr left by r + 1
0 rotate column c down by ¢ + 1
0 rotate row rleft by r

o| B | C
! G H
2 L I
Rotate by 4 = no change M :

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
o rotate column c down by c + 1

0 rotate row rleft by r ’ 1
0 B C
L G H
2 L |
3 M N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
o rotate column c down by c + 1

0 rotate row rleft by r ’ 1
o | M C
L B H
2 | G |
3 L N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
o rotate column c down by c + 1

0 rotate row rleft by r ’ 1
o | M C
L B H
2 | G |
3 L N

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
o rotate column c down by c + 1

0 rotate row rleft by r ’ 1
o | M |
L B N
2 | G C
3 L H

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
o rotate column c down by c + 1

0 rotate row rleft by r ’ 1
o | M |
L B N
2 | G C
3 L H

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
o rotate column c down by c + 1

0 rotate row rleft by r ’ 1
o | M |
L B N
2 | G C
3 L H

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
o rotate column c down by c + 1

0 rotate row rleft by r ’ 1
o | M |
L B N
2 | G C
3 L H

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1
0 rotate rowr left by r

0 M I

! B N
2 G C
3 L H

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1
0 rotate rowr left by r

0 M I

! B N
2 G C
3 L H

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1
0 rotate rowr left by r

0 M I
! N J
2 G C
3 L H

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1
0 rotate rowr left by r

0 M I

! N J
2 G C
3 L H

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1
0 rotate rowr left by r

0 M I
! N J
2 O K
3 L H

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1
0 rotate rowr left by r

0 M I
! N J
2 O K
3 L H

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1
0 rotate rowr left by r

0 M I
! N J
2 O K
3 P L

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Row-column-row algorithm

- An algorithm for rotating block of bits

. Basic idea:
0 rotate row rleft by r + 1
0 rotate column c down by ¢ + 1

0 1
0 rotate row rleft by r

o M |

0 1 2 3
ol A B | C D "1 N J
" E F G H 2 | 0 K
2 J K L 5 5 .

3| M N o) P

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

How to implement row rotation?

Operator | Description |

& AND

| OR

A XOR (exclusive OR)

~ NOT (one’s complement)

<< shift left
>> shift right

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

How to implement column rotation?

Input: N x N matrix of bits, stored in row-major order.
Goal: Circularly rotate ith column of bits up i rows.

a00 aOl a02 a03 a00 all a22 a33

alO a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33 a30 a01 a12 a23

In the example that follows, we have N = 32. Each row
is stored in a 32-bit word, with column 0 in the
most-significant bit.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Naive approach

const uint32 t N = 32;
const uint32 t mask = 1 << (N-1);
uint32 t A[N];
for (int 1 = 0; 1 < Nj; i++){
uint32 t col = 0O;
// gather bits in column i
for (int j = 0; j < N; j++)
col = col | (((A[]] << i) & mask) >> j);
// rotate bits in column i
col = (col << i) | (col >> (N - i));
// put column i back
for (int j = 0; j < N; Jj++)
A[3]1 = (A[]j] & ~(mask >> i)) |
(((col << j) >> 1) & (mask >> i));
}

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

CoDING TIME!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

45

More hints

- Loop unrolling

- Function inlining

- Algebraic identities
. Tiling

- Prefetching

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

