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Homework 2 is released!

● You have a checkoff part and the actual homework part
● Checkoff is due: tonight 10 pm
● Homework 2 is due: Monday September 15

● Project 1 beta: September 23, Tuesday
● Project 1 final: October 2, Thursday

● Reach tier 25 for Project 1 beta to get at least B grade!
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Gradescope

● For write-ups, when you make your submission, please link 
each question to the page that you answer is on.

● Eg: for question 1, your answer is on page 1 and 2. For 
question 2, your answer is on page 2 and 3.

● It is ok to link multiple pages to one question!

● This makes it easier for TA to clearly see your submission for 
every question and don’t miss anything!
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Gradescope

● Make sure you follow the handout carefully and submit all 
the required materials.

● Write-up 12: Compile again with make clean; make 
LOCAL=1 UBSAN=1. What do you see when you run 
./is_power_of_two? Paste the error that the sanitizer throws. 
In addition, explain where and why this error happened. Fix 
the error you found and explain your fix. Finally, compile and 
run the program again and verify that the output is correct. 
Paste your program output.
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PROJECT 1: CONTINUE
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First step: block-wise rotation
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Next step: in-block rotation
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Next step: in-block rotation
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One possible approach: row-column-row

● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r
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Row-column-row algorithm
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● An algorithm for rotating block of bits
● Basic idea:

� rotate row r left by r + 1
� rotate column c down by c + 1
� rotate row r left by r

Rotate by 4 = no change
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How to implement row rotation?
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How to implement column rotation?

Input: N × N matrix of bits, stored in row-major order.
Goal:  Circularly rotate ith column of bits up i rows.

In the example that follows, we have N = 32.  Each row 
is stored in a 32-bit word, with column 0 in the 
most-significant bit.
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Naive approach
const uint32_t N = 32;
const uint32_t mask = 1 << (N-1);
uint32_t A[N];
for (int i = O; i < N; i++){
  uint32_t col = O;
  // gather bits in column i  
  for (int j = O; j < N; j++)
    col = col | (((A[j] << i) & mask) >> j);
  // rotate bits in column i
  col = (col << i) | (col >> (N - i));
  // put column i back
  for (int j = O; j < N; j++)
    A[j] = (A[j] & ~(mask >> i)) |
        (((col << j) >> i) & (mask >> i));
}
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More hints

● Loop unrolling
● Function inlining
● Algebraic identities
● Tiling
● Prefetching
● ……


