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Some due dates

The passed due dates:

- HWO (bio sign up and course info quizle): Tuesday, Aug 26
- HW1 checkoff: Friday, Aug 29

. HWO extension: Sunday, Aug 31

. HW1: Monday, Sep 1

Upcoming due dates:

- Weekly report for week 1: Wednesday, Sep 3
- Project 1 Beta: Tuesday, September 23
- Project 1 Final: Thursday, October 9
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Office Hour

- No fixed office hour

. reach out during recitation & on piazza

. If you need some in-person discussion time, schedule an
office hour with me!

- My email: sunzeai@msu.edu

. My office: EB 3353
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Semester overview

« 6 homeworks
1 follow the handout instructions

o submit your write-up
. Gradescope and GitHub homework repo

1 some part will be checked off in class
. 3 projects (1 optional for extra credit)
0 project 1: invididual, project 2: assigned team
o beta submission & beta write-up
1 anonymized code shared for everyone after beta

o final submission & final write-up
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Weekly status report

- A short paragraph of your weekly summary

- Open on Fridays, close on Mondays, submit on Gradescope

- What you can talk about:

o Your impression of the past week’s lectures and recitations

0 Your feelings regarding your project partner or the course in
general.

o Feedback on interactions you had with the course staff.

o Reflect on how effectively you feel you are working on class
assignments and how much time you're devoting.

o ldentify the aspects of the class you found most engaging or
frustrating.

o Offer constructive criticism about how the class is being taught.

o Report on any outside events that may have impacted your work
on the course
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The late-day policy for assignments

. 3 late days total for each semester

. atomic, no subdivision (no 0.5 day)

. homework assignment and project write-up only, not for
project beta and final assignment (the coding part)

. inform the TA before the deadline
o make a private post on piazza with #late-days tag
. if exceeding the 3 late days: require a note from Student
Support Service to accept your late work
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LET’S START PROJECT 1!
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Summarize homework 1

. set up and test out the virtual environment
. basic C programming practice

. useful tools:

o debugging tool: GDB, DEBUG=1, tbassert
1 memory checker: address sanitizer, valgrind
o code coverage: llvm-cov
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Project 1: Bit Hacks
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Figure 1: (a) The original 192-by-192 monochrome image. (b) The image after rotation.
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29 void rotate bit matrix(uint8 t *img, const bits t N) {

3 / Get the number of bytes per row in ~img

31 const uint32 t row _size = bits to bytes(N);

32

33 uint32_t w, h, quadrant;

34 for (h =0; h <N/ 2; ht+) {

35 for (w=0; w< N/ 2; wt) {

36 uint32. t i =w, j = h;

37 uint8 t tmp bit = get bit(img, row size, i, j);

38

39 // Move a bit from one quadrant to the next and do this
40 // for all 4 quadrants of the “img’

41 for (quadrant = 0; quadrant < 4; quadrant++) {

42 uint32 t next 1 = N - j - 1, next j = i;

43 uint8 t save bit = tmp bit;

a4

45 tmp bit = get bit(img, row size, next i, next j);
46 set bit(img, row size, next i, next j, save bit);
47

48

49

50 i=

51 j=

52 }

53 }

54 }

55

56 return;
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Basic idea: “follow the cycles”

f Y

apo) 4o1 42 |403 azo| 4o1 402 400
aip 411 412 413 aip 411 412 413
dao 4z1 4y 43 Ao 4z1 4y a3
azp| 431 43z 433 az3| 431 4z 403
(a) before apgrymg-cymc%ermutation (b) after applying cyclic permutation

By applying the same rotation to each group of 4 bits, the
program ends up rotating the entire matrix clock-wise.
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Performance?

——— Execution log:

FYI: the max tier you can be graded on is 57.
Setting up test up to tier 25: Malloc 72192x72192 matrix...

FAIL (timeout): Tier 0 : Rotated

Blowing through this failure. Remaining
PASS (ayy!): Tier 1 : Rotated
PASS (skrrt!): Tier 2 : Rotated
FAIL (timeout): Tier 3 : Rotated
Blowing through this failure. Remaining
FAIL (timeout): Tier 4 : Rotated

Result: reached tier 2
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1571 ms but the cutoff is 1000 ms
850 ms
948 ms
1035 ms but the cutoff is 1000 ms

1167 ms but the cutoff is 1000 ms
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First step: from bit to block

A B C M BCA =B C >
E F G H EFGH EF GH
I J KL I J KL I J KL
MNOP P NO oNO

(a) Original image (b) Image after translat- (c) Image after rotating

Rotate the blocks 4 in a group -> rotate inside each block



Some notice in advance:

« No parallelism in project 1

« No built-in intrinsics for beta submission

o if you don’t know what built-in intrinsics are, we’ll cover that in
upcoming recitations

. Don'’t jump too fast, implement one step at a time
- Check your performance by . /rotate -t tiers

o I'd recommend using telerun as the performance is more
consistent on telerun than testing locally

. Edit your Makefile:
n CC := clang-spe
o ARCH := x86-64-v3
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CoDING TIME!
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Endianess

. Little endian: bytes of words are stored in memory with
least-significant bytes first

. the actual word: 1A 2B 3C 4D 5E 6F 7A 8B
. store in memory: 8B 7A 6F 5E 4D 3C 2B 1A

. If you encounter any bugs, think about the endianess
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Edge cases
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CoDING TIME!
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