Software Performance Engineering

PER ORDER OF SPE

Recitation 1.1

Sophia Sun
Tuesday, Sep 2, 2025

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

CouRrsE LoaisTICS

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Some due dates

The passed due dates:

- HWO (bio sign up and course info quizle): Tuesday, Aug 26
- HW1 checkoff: Friday, Aug 29

. HWO extension: Sunday, Aug 31

. HW1: Monday, Sep 1

Upcoming due dates:

- Weekly report for week 1: Wednesday, Sep 3
- Project 1 Beta: Tuesday, September 23
- Project 1 Final: Thursday, October 9

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Office Hour

- No fixed office hour

. reach out during recitation & on piazza

. If you need some in-person discussion time, schedule an
office hour with me!

- My email: sunzeai@msu.edu

. My office: EB 3353

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Semester overview

« 6 homeworks
1 follow the handout instructions

o submit your write-up
. Gradescope and GitHub homework repo

1 some part will be checked off in class
. 3 projects (1 optional for extra credit)
0 project 1: invididual, project 2: assigned team
o beta submission & beta write-up
1 anonymized code shared for everyone after beta

o final submission & final write-up

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Weekly status report

- A short paragraph of your weekly summary

- Open on Fridays, close on Mondays, submit on Gradescope

- What you can talk about:

o Your impression of the past week’s lectures and recitations

0 Your feelings regarding your project partner or the course in
general.

o Feedback on interactions you had with the course staff.

o Reflect on how effectively you feel you are working on class
assignments and how much time you're devoting.

o ldentify the aspects of the class you found most engaging or
frustrating.

o Offer constructive criticism about how the class is being taught.

o Report on any outside events that may have impacted your work
on the course

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

The late-day policy for assignments

. 3 late days total for each semester

. atomic, no subdivision (no 0.5 day)

. homework assignment and project write-up only, not for
project beta and final assignment (the coding part)

. inform the TA before the deadline
o make a private post on piazza with #late-days tag
. if exceeding the 3 late days: require a note from Student
Support Service to accept your late work

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

10

LET’S START PROJECT 1!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

11

Summarize homework 1

. set up and test out the virtual environment
. basic C programming practice

. useful tools:

o debugging tool: GDB, DEBUG=1, tbassert
1 memory checker: address sanitizer, valgrind
o code coverage: llvm-cov

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

12

Project 1: Bit Hacks

0,9

PER ORDER OF 6.106

-
m
b
o]
bl
o
m
=
o]
-
o
o
a

@ (b)

Figure 1: (a) The original 192-by-192 monochrome image. (b) The image after rotation.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

13

29 void rotate bit matrix(uint8 t *img, const bits t N) {

3 / Get the number of bytes per row in ~img

31 const uint32 t row _size = bits to bytes(N);

32

33 uint32_t w, h, quadrant;

34 for (h =0; h <N/ 2; ht+) {

35 for (w=0; w< N/ 2; wt) {

36 uint32. t i =w, j = h;

37 uint8 t tmp bit = get bit(img, row size, i, j);

38

39 // Move a bit from one quadrant to the next and do this
40 // for all 4 quadrants of the “img’

41 for (quadrant = 0; quadrant < 4; quadrant++) {

42 uint32 t next 1 = N - j - 1, next j = i;

43 uint8 t save bit = tmp bit;

a4

45 tmp bit = get bit(img, row size, next i, next j);
46 set bit(img, row size, next i, next j, save bit);
47

48

49

50 i=

51 j=

52 }

53 }

54 }

55

56 return;

© 2008-2024 by the MIT 6.172 and }

Basic idea: “follow the cycles”

f Y

apo) 4o1 42 |403 azo| 4o1 402 400
aip 411 412 413 aip 411 412 413
dao 4z1 4y 43 Ao 4z1 4y a3
azp| 431 43z 433 az3| 431 4z 403
(a) before apgrymg-cymc%ermutation (b) after applying cyclic permutation

By applying the same rotation to each group of 4 bits, the
program ends up rotating the entire matrix clock-wise.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Performance?

——— Execution log:

FYI: the max tier you can be graded on is 57.
Setting up test up to tier 25: Malloc 72192x72192 matrix...

FAIL (timeout): Tier 0 : Rotated

Blowing through this failure. Remaining
PASS (ayy!): Tier 1 : Rotated
PASS (skrrt!): Tier 2 : Rotated
FAIL (timeout): Tier 3 : Rotated
Blowing through this failure. Remaining
FAIL (timeout): Tier 4 : Rotated

Result: reached tier 2

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

26624x26624
blowthroughs: 1
27712x27712
28864x28864
30080x30080
blowthroughs: ©
31296x31296

matrix
matrix
matrix
matrix

matrix

in
in
in
in

in

1571 ms but the cutoff is 1000 ms
850 ms
948 ms
1035 ms but the cutoff is 1000 ms

1167 ms but the cutoff is 1000 ms

20

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Some analogy

22

First step: from bit to block

A B C M BCA =B C >
E F G H EFGH EF GH
I J KL I J KL I J KL
MNOP P NO oNO

(a) Original image (b) Image after translat- (c) Image after rotating

Rotate the blocks 4 in a group -> rotate inside each block

Some notice in advance:

« No parallelism in project 1

« No built-in intrinsics for beta submission

o if you don’t know what built-in intrinsics are, we’ll cover that in
upcoming recitations

. Don'’t jump too fast, implement one step at a time
- Check your performance by . /rotate -t tiers

o I'd recommend using telerun as the performance is more
consistent on telerun than testing locally

. Edit your Makefile:
n CC := clang-spe
o ARCH := x86-64-v3

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 24

CoDING TIME!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

25

Endianess

. Little endian: bytes of words are stored in memory with
least-significant bytes first

. the actual word: 1A 2B 3C 4D 5E 6F 7A 8B
. store in memory: 8B 7A 6F 5E 4D 3C 2B 1A

. If you encounter any bugs, think about the endianess

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

26

Edge cases

O O X
AN LL ™
< Wl

L 0
OO O
AN LWL D =2
< W H =

CoDING TIME!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

PER ORDER OF SPE

28

