
Software Performance Engineering

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

LECTURE 9
Scheduling Theory
and Parallel Loops

Xuhao Chen
October 14, 2025

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

WORK LAW

TP ≥T1/P

SPAN LAW

TP ≥ T∞

Performance Measures

TP = execution time on P processors

= 18 = 9

T1 = work T∞ = span

2

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Parallelism

As the SPAN LAW dictates that TP ≥ T∞, the
maximum possible speedup given T1 and T∞ is

T1/T∞ = parallelism

 = the average amount of work
 per step along the span

 = 18/9

 = 2 .

3

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

SCHEDULING THEORY

4

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Scheduling

…

Memory I/O

$

P

$

P

$

P

Network

⚫ Cilk allows the programmer to express
potential parallelism in an application

⚫ The Cilk scheduler maps strands onto
processors dynamically at runtime

⚫ Since the theory of distributed
schedulers is complicated, we’ll
explore the ideas with a simple,
centralized scheduler

5

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Greedy Scheduling

Definition. A strand is ready if all its
predecessors have executed.

IDEA: Do as much as possible on every step.

6

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Greedy Scheduling

Complete step
● ≥ P strands ready.
● Run any P.

P = 3

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its
predecessors have executed.

7

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Greedy Scheduling

P = 3

Incomplete step
● < P strands ready.
● Run all of them.

Definition. A strand is ready if all its
predecessors have executed.

IDEA: Do as much as possible on every step.

Complete step
● ≥ P strands ready.
● Run any P.

8

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Greedy Scheduling Theorem [G68, B75, EZL89].
Any greedy scheduler achieves

TP ≤ T1/P + T∞.

Analysis of Greedy

Proof.
∙ # complete steps ≤ T1/P

since each complete step
performs P work.

∙ # incomplete steps ≤ T∞
since each incomplete step
reduces the span of the
unexecuted dag by 1. ■

9

WORK LAW

TP ≥T1/P

SPAN LAW

TP ≥ T∞

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let TP* be the execution time produced by the optimal scheduler.
Since TP* ≥ max{T1/P, T∞} by the WORK and SPAN LAWS, we have

 TP ≤ T1/P + T∞

 ≤ 2⋅max{T1/P, T∞}
 ≤ 2TP* ■

10

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Linear Speedup

Proof. Since T1/T∞ ≫ P is equivalent to
T∞ ≪ T1/P, the Greedy Scheduling Theorem gives us

 TP ≤ T1/P + T∞

 ≈ T1/P .

Thus, the speedup is T1/TP ≈ P. ■

Definition. The quantity (T1/T∞)/P = T1/PT∞ is called the parallel slackness.

11

Corollary. Any greedy scheduler achieves near-perfect linear speedup
 whenever T1/T∞ ≫ P.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilk Performance

● Cilk’s randomized work-stealing scheduler achieves
❖ TP = T1/P + O(T∞) expected time (provably);
❖ TP ≈ T1/P + T∞ time (empirically).

● Near-perfect linear speedup as long as P ≪ T1/T∞ .

● Instrumentation in Cilkscale allows you to measure T1 and T∞ .

12

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

PARALLEL LOOPS

13

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Loop Parallelism in Cilk

Example:
In-place
matrix
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮

a1n a2n ⋯ ann

A AT

// indices run from 0, not 1
for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

14

The iterations of a cilk_for
loop execute in parallel.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Loop Parallelism in Cilk

The iterations of a cilk_for
loop execute in parallel.

Example:
In-place
matrix
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮

a1n a2n ⋯ ann

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

15

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Implementation of Parallel Loops

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Compiler-generated
recursion

Original code

void p_loop(int lo, int hi) //half open

16

Divide-and-conquer
The OpenCilk compiler
implements cilk_for loops
using divide and conquer at
optimization levels –O1 and higher

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Divide-and-conquer

Implementation of Parallel Loops

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

The OpenCilk compiler
implements cilk_for loops
using divide and conquer at
optimization levels –O1 and higher

Original code

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Compiler-generated
recursion

p_loop(1, n);
17

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Implementation of Parallel Loops

if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope{
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }

cilk_for
loop control

cilk_for (int i=1; i<n; ++i) {

18

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Implementation of Parallel Loops

lifted
loop body

for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }

19

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Divide-and-conquer
implementation

Execution of Parallel Loops

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

cilk_for loop control
(internal nodes)

Trace

20

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Divide-and-conquer
implementation

Execution of Parallel Loops

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

Trace

cilk_for body
(leaves)

21

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

Work: T1(n) = Θ(n2) Work: T1(n) =

Analysis of Parallel Matrix Transpose

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

22

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

Work: T1(n) = Θ(n2)

Parallelism: T1(n)/T∞(n) = Θ(n2)/Θ(n) = Θ(n)

Work: T1(n) =

Parallelism: T1(n)/T∞(n) =

Analysis of Parallel Matrix Transpose

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

Span of loop control = Θ(lg n)

Max span of body = Θ(n)

Span: T∞(n) =Span: T∞(n) = Θ(n + lg n) = Θ(n)

23

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Span: T∞(n) = Θ(lg n)
Work: T1(n) = Θ(n2)
Span: T∞(n) =
Parallelism: T1(n)/T∞(n) = Θ(n2/lg n)

Work: T1(n) =

Parallelism: T1(n)/T∞(n) =

Analysis of Nested Parallel Loops

Span of outer loop control = Θ(lg n)

Span of body = Θ(1) .

Max span of inner loop control = Θ(lgn)

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 cilk_for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

24

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Span: T∞(n) = Θ(lg n)
Work: T1(n) = Θ(n2)
Span: T∞(n) =
Parallelism: T1(n)/T∞(n) = Θ(n2/lg n)

Work: T1(n) =

Parallelism: T1(n)/T∞(n) =

Analysis of Nested Parallel Loops

Span of outer loop control = Θ(lg n)

Span of body = Θ(1) .

Max span of inner loop control = Θ(lgn)

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 cilk_for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

25

How much loop
control overhead?

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Parallelism: T1/T∞ =Parallelism: T1/T∞ = Θ(n/lg n)
Span: T∞ =Span: T∞ = Θ(lg n)
Work: T1 = Θ(n)

Vector addition

Work: T1 =

A Closer Look at Parallel Loops

cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

Includes
substantial
overhead!

26

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Compiler-generated recursion

Optimizing Parallel-Loop Control

cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

void p_loop(int lo, int hi) { //half open
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 for (int i=lo; i<hi; ++i) {
 A[i] += B[i];
 }
}
⋮
p_loop(0, n);

Original code

27

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Coarsening Parallel Loops

If a grain-size pragma is not
specified, the Cilk runtime
system heuristically guesses
G to minimize overhead.

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

Compiler-generated recursion

void p_loop(int lo, int hi) { //half open
 if (hi > lo + G) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 for (int i=lo; i<hi; ++i) {
 A[i] += B[i];
 }
}
⋮
p_loop(0, n);

28

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Let I be the time for one iteration of the loop body.
Let S be the time to perform a level of the recursion.

Loop Grain Size

Vector
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

G⋅I

S

29

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1 = n⋅I + (n/G – 1)⋅S

Loop Grain Size

Vector
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

G⋅I

S

30
real work work overhead

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

G⋅I

S

31

G be large

G be small

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

G⋅I

S

32

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

G⋅I

S

e.g., G≈10(S/I) for 10% work overhead

Want G ≫S/I (work) and G small (span)

Parallelism
T1/T∞ ≈ Θ(n/lg n)/(S/I)

33

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1 =Work: T1 = Θ(n)
Span: T∞ =

void vadd (double *A, double *B, int n){
 cilk_scope {
 for (int j=0; j<n; j+=G) {
 cilk_spawn {
 for (int i=j; i<MIN(j+G,n); i++)
 A[i] += B[i];
} } } }

…

G⋅I

…

Assume that G = 1.

Another Implementation

34

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1 =Work: T1 = Θ(n)
Span: T∞ =
Parallelism: T1/T∞ = Θ(1)
Span: T∞ = Θ(n)
Parallelism: T1/T∞ =

…

G⋅I

…

Assume that G = 1.

puny

Another Implementation
void vadd (double *A, double *B, int n){
 cilk_scope {
 for (int j=0; j<n; j+=G) {
 cilk_spawn {
 for (int i=j; i<MIN(j+G,n); i++)
 A[i] += B[i];
} } } }

35

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1 = Θ(n)
Span: T∞ = Θ(G + n/G)
Parallelism: T1/T∞ =

Work: T1 =
Span: T∞ = Θ(G + n/G) = Θ(√n)
Parallelism: T1/T∞ = Θ(√n)
Span: T∞ =

Analysis in
terms of G

Another Implementation

Choose
G = √n to
minimize.…

G⋅I

…

void vadd (double *A, double *B, int n){
 cilk_scope {
 for (int j=0; j<n; j+=G) {
 cilk_spawn {
 for (int i=j; i<MIN(j+G,n); i++)
 A[i] += B[i];
} } } }

36

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work:
Span:

Parallelism:

Work:
Span:

Parallelism:

Quiz on Parallel Loops

Question: Let P ≪ n be the number of workers on the system.
How does the asymptotic parallelism of Code A compare to that
of Code B? (Differences highlighted.)

#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=n/P) {
 for (int j=i; j<MIN(i+n/P, n); ++j)
 A[j] += B[j];
}

#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=32) {
 for (int j=i; j<MIN(i+32, n); ++j)
 A[j] += B[j];
}

n/P
n/P

32
32

Code A

Code B

37

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Three Performance Tips

1. Minimize the span to maximize parallelism.
● Try to generate 10 times more parallelism than processors for

near-perfect linear speedup.

2. If you have plenty of parallelism, try to trade some of it
off to reduce work overhead.

3. Use divide-and-conquer recursion or parallel loops
rather than spawning one small thing after another.

cilk_scope {
 for (int i=0; i<n; ++i) {
 cilk_spawn foo(i);
} }

cilk_for (int i=0; i<n; ++i) {
 foo(i);
}

Do this:

Not this:

40

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Do this:

And Three More

4. Ensure that work/#spawns is sufficiently large.
● Coarsen by using function calls and inlining near the leaves of recursion,

rather than spawning.

5. Parallelize outer loops, as opposed to inner loops, if you’re
forced to make a choice.

6. Watch out for scheduling overheads.

cilk_for (int i=0; i<2; ++i) {
 for (int j=0; j<n; ++j)
 f(i,j);
}

for (int j=0; j<n; ++j) {
 cilk_for (int i=0; i<2; ++i)
 f(i,j);
}

Not this:

41

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Take-Aways

42

⚫ Any greedy scheduler provides linear speedup on computations
having sufficient parallel slackness

⚫ The OpenCilk runtime system incorporates a randomized
work-stealing scheduler that has strong theoretical bounds on
its running time which are similar to those for greedy scheduling

⚫ Loops in Cilk are synthesized using divide-and-conquer
spawning, which incurs linear work and logarithmic span

⚫ Coarsening recursion can reduce loop overhead

	Slide 1: Lecture 9 Scheduling Theory and Parallel Loops
	Slide 2: Performance Measures
	Slide 3: Parallelism
	Slide 4: Scheduling Theory
	Slide 5: Scheduling
	Slide 6: Greedy Scheduling
	Slide 7: Greedy Scheduling
	Slide 8: Greedy Scheduling
	Slide 9: Analysis of Greedy
	Slide 10: Optimality of Greedy
	Slide 11: Linear Speedup
	Slide 12: Cilk Performance
	Slide 13: Parallel Loops
	Slide 14: Loop Parallelism in Cilk
	Slide 15: Loop Parallelism in Cilk
	Slide 16: Implementation of Parallel Loops
	Slide 17: Implementation of Parallel Loops
	Slide 18: Implementation of Parallel Loops
	Slide 19: Implementation of Parallel Loops
	Slide 20: Execution of Parallel Loops
	Slide 21: Execution of Parallel Loops
	Slide 22: Analysis of Parallel Matrix Transpose
	Slide 23: Analysis of Parallel Matrix Transpose
	Slide 24: Analysis of Nested Parallel Loops
	Slide 25: Analysis of Nested Parallel Loops
	Slide 26: A Closer Look at Parallel Loops
	Slide 27: Optimizing Parallel-Loop Control
	Slide 28: Coarsening Parallel Loops
	Slide 29: Loop Grain Size
	Slide 30: Loop Grain Size
	Slide 31: Loop Grain Size
	Slide 32: Loop Grain Size
	Slide 33: Loop Grain Size
	Slide 34: Another Implementation
	Slide 35: Another Implementation
	Slide 36: Another Implementation
	Slide 37: Quiz on Parallel Loops
	Slide 40: Three Performance Tips
	Slide 41: And Three More
	Slide 42: Take-Aways

