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WORK LAW

TP ≥T1/P

SPAN LAW

TP ≥ T∞

Performance Measures

TP = execution time on P processors

= 18 = 9

T1 = work T∞ = span
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Parallelism

As the SPAN LAW dictates that TP ≥ T∞, the 
maximum possible speedup given T1 and T∞ is

T1/T∞ = parallelism

 = the average amount of work 
  per step along the span

 = 18/9

 = 2 .
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SCHEDULING THEORY
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Scheduling

…

Memory I/O

$

P

$

P

$

P

Network

⚫ Cilk allows the programmer to express 
potential parallelism in an application

⚫ The Cilk scheduler maps strands onto 
processors dynamically at runtime

⚫ Since the theory of distributed 
schedulers is complicated, we’ll 
explore the ideas with a simple, 
centralized scheduler

5
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Greedy Scheduling

Definition. A strand is ready if all its 
predecessors have executed.

IDEA: Do as much as possible on every step.

6
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Greedy Scheduling

Complete step 
● ≥ P strands ready.
● Run any P.

P = 3

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its 
predecessors have executed.

7
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Greedy Scheduling

P = 3

Incomplete step 
● < P strands ready.
● Run all of them.

Definition. A strand is ready if all its 
predecessors have executed.

IDEA: Do as much as possible on every step.

Complete step 
● ≥ P strands ready.
● Run any P.

8
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Greedy Scheduling Theorem [G68, B75, EZL89].  
Any greedy scheduler achieves

TP ≤ T1/P + T∞.

Analysis of Greedy

Proof. 
∙ # complete steps ≤ T1/P 

since each complete step 
performs P work.

∙ # incomplete steps ≤ T∞ 
since each incomplete step 
reduces the span of the 
unexecuted dag by 1.  ■

9

WORK LAW

TP ≥T1/P

SPAN LAW

TP ≥ T∞
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Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let TP* be the execution time produced by the optimal scheduler.  
Since TP* ≥ max{T1/P, T∞} by the WORK and SPAN LAWS, we have

 TP ≤ T1/P + T∞ 

  ≤ 2⋅max{T1/P, T∞}
  ≤ 2TP* ■

10
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Linear Speedup

Proof. Since T1/T∞ ≫ P is equivalent to 
T∞ ≪ T1/P, the Greedy Scheduling Theorem gives us 

 TP ≤ T1/P + T∞

  ≈ T1/P .

Thus, the speedup is T1/TP ≈ P.  ■

Definition. The quantity (T1/T∞)/P = T1/PT∞ is called the parallel slackness.

11

Corollary. Any greedy scheduler achieves near-perfect linear speedup  
 whenever T1/T∞ ≫ P.
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Cilk Performance

● Cilk’s randomized work-stealing scheduler achieves
❖  TP = T1/P + O(T∞) expected time (provably);
❖  TP ≈ T1/P + T∞ time (empirically).

● Near-perfect linear speedup as long as P ≪ T1/T∞ .

● Instrumentation in Cilkscale allows you to measure T1 and T∞ .

12
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Loop Parallelism in Cilk

Example: 
In-place 
matrix 
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮

a1n a2n ⋯ ann

A AT

// indices run from 0, not 1
for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

14

The iterations of a cilk_for 
loop execute in parallel.
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Loop Parallelism in Cilk

The iterations of a cilk_for 
loop execute in parallel.

Example: 
In-place 
matrix 
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮

a1n a2n ⋯ ann

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

15
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Implementation of Parallel Loops

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Compiler-generated 
recursion

Original code

void p_loop(int lo, int hi)  //half open

16

Divide-and-conquer
The OpenCilk compiler 
implements cilk_for loops 
using divide and conquer at 
optimization levels –O1 and higher
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Divide-and-conquer

Implementation of Parallel Loops

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

The OpenCilk compiler 
implements cilk_for loops 
using divide and conquer at 
optimization levels –O1 and higher

Original code

void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Compiler-generated 
recursion

p_loop(1, n);
17
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// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Implementation of Parallel Loops

if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope{
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    } 
    return;
  } 

cilk_for 
loop control

cilk_for (int i=1; i<n; ++i) {

18
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// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }

void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Implementation of Parallel Loops

lifted
loop body

for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }

19
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void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Divide-and-conquer 
implementation

Execution of Parallel Loops

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

cilk_for loop control
(internal nodes)

Trace

20
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void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Divide-and-conquer 
implementation

Execution of Parallel Loops

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

Trace

cilk_for body 
(leaves)

21
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// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

Work: T1(n) = Θ(n2) Work: T1(n) =

Analysis of Parallel Matrix Transpose

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

22
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// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

Work: T1(n) = Θ(n2) 

Parallelism: T1(n)/T∞(n) = Θ(n2)/Θ(n) = Θ(n) 

Work: T1(n) =

Parallelism: T1(n)/T∞(n) =

Analysis of Parallel Matrix Transpose

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

Span of loop control = Θ(lg n) 

Max span of body = Θ(n) 

Span: T∞(n) =Span: T∞(n) = Θ(n + lg n) = Θ(n) 

23
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Span: T∞(n) = Θ(lg n)
Work: T1(n) = Θ(n2) 
Span: T∞(n) =
Parallelism: T1(n)/T∞(n) = Θ(n2/lg n)  

Work: T1(n) =

Parallelism: T1(n)/T∞(n) =

Analysis of Nested Parallel Loops

Span of outer loop control = Θ(lg n) 

Span of body = Θ(1) .

Max span of inner loop control = Θ(lgn) 

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  cilk_for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

24
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Span: T∞(n) = Θ(lg n)
Work: T1(n) = Θ(n2) 
Span: T∞(n) =
Parallelism: T1(n)/T∞(n) = Θ(n2/lg n)  

Work: T1(n) =

Parallelism: T1(n)/T∞(n) =

Analysis of Nested Parallel Loops

Span of outer loop control = Θ(lg n) 

Span of body = Θ(1) .

Max span of inner loop control = Θ(lgn) 

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  cilk_for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

25

How much loop
control overhead?
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Parallelism: T1/T∞ =Parallelism: T1/T∞ = Θ(n/lg n) 
Span: T∞ =Span: T∞ = Θ(lg n)
Work: T1 = Θ(n) 

Vector addition

Work: T1 =

A Closer Look at Parallel Loops

cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

Includes 
substantial 
overhead!

26
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Compiler-generated recursion

Optimizing Parallel-Loop Control

cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

void p_loop(int lo, int hi) { //half open
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  for (int i=lo; i<hi; ++i) {
    A[i] += B[i];
  }
}
⋮
p_loop(0, n);

Original code

27
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Coarsening Parallel Loops

If a grain-size pragma is not 
specified, the Cilk runtime 
system heuristically guesses 
G to minimize overhead.

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

Compiler-generated recursion

void p_loop(int lo, int hi) { //half open
  if (hi > lo + G) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  for (int i=lo; i<hi; ++i) {
    A[i] += B[i];
  }
}
⋮
p_loop(0, n);

28
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Let I be the time for one iteration of the loop body.
Let S be the time to perform a level of the recursion. 

Loop Grain Size

Vector 
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

G⋅I

S

29
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Work: T1 = n⋅I + (n/G – 1)⋅S

Loop Grain Size

Vector 
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

G⋅I

S

30
real work work overhead
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Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector 
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

G⋅I

S

31

G be large

G be small
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Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector 
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

G⋅I

S

32



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector 
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

G⋅I

S

e.g., G≈10(S/I) for 10% work overhead

Want G ≫S/I (work) and G small (span)

Parallelism
T1/T∞ ≈ Θ(n/lg n)/(S/I)

33
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Work: T1 =Work: T1 = Θ(n) 
Span: T∞ =

void vadd (double *A, double *B, int n){
  cilk_scope {
    for (int j=0; j<n; j+=G) {
      cilk_spawn {
        for (int i=j; i<MIN(j+G,n); i++) 
          A[i] += B[i];
} } } }

…

G⋅I

…

Assume that G = 1.

Another Implementation

34
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Work: T1 =Work: T1 = Θ(n) 
Span: T∞ =
Parallelism: T1/T∞ = Θ(1)  
Span: T∞ = Θ(n)
Parallelism: T1/T∞ =

…

G⋅I

…

Assume that G = 1.

puny

Another Implementation
void vadd (double *A, double *B, int n){
  cilk_scope {
    for (int j=0; j<n; j+=G) {
      cilk_spawn {
        for (int i=j; i<MIN(j+G,n); i++) 
          A[i] += B[i];
} } } }

35
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Work: T1 = Θ(n) 
Span: T∞ = Θ(G + n/G)
Parallelism: T1/T∞ =

Work: T1 =
Span: T∞ = Θ(G + n/G) = Θ(√n) 
Parallelism: T1/T∞ = Θ(√n)  
Span: T∞ =

Analysis in 
terms of G

Another Implementation

Choose 
G = √n to 
minimize.…

G⋅I

…

void vadd (double *A, double *B, int n){
  cilk_scope {
    for (int j=0; j<n; j+=G) {
      cilk_spawn {
        for (int i=j; i<MIN(j+G,n); i++) 
          A[i] += B[i];
} } } }

36
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Work:
Span:

Parallelism:

Work:
Span:

Parallelism:

Quiz on Parallel Loops

Question: Let P ≪ n be the number of workers on the system.  
How does the asymptotic parallelism of Code A compare to that 
of Code B?  (Differences highlighted.)

#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=n/P) {
  for (int j=i; j<MIN(i+n/P, n); ++j)
    A[j] += B[j]; 
}

#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=32) {
  for (int j=i; j<MIN(i+32, n); ++j)
    A[j] += B[j]; 
}

n/P
n/P

32
32

Code A

Code B

37
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Three Performance Tips

1. Minimize the span to maximize parallelism.  
● Try to generate 10 times more parallelism than processors for 

near-perfect linear speedup.

2. If you have plenty of parallelism, try to trade some of it 
off to reduce work overhead.

3. Use divide-and-conquer recursion or parallel loops 
rather than spawning one small thing after another.

cilk_scope {
  for (int i=0; i<n; ++i) {
    cilk_spawn foo(i);
}  }

cilk_for (int i=0; i<n; ++i) {
  foo(i);
}

Do this:

Not this:

40
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Do this:

And Three More

4. Ensure that work/#spawns is sufficiently large.
● Coarsen by using function calls and inlining near the leaves of recursion, 

rather than spawning.

5. Parallelize outer loops, as opposed to inner loops, if you’re 
forced to make a choice.

6. Watch out for scheduling overheads.

cilk_for (int i=0; i<2; ++i) {
  for (int j=0; j<n; ++j)
    f(i,j);
}

for (int j=0; j<n; ++j) {
  cilk_for (int i=0; i<2; ++i)
    f(i,j);
}

Not this:

41
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Take-Aways

42

⚫ Any greedy scheduler provides linear speedup on computations 
having sufficient parallel slackness

⚫ The OpenCilk runtime system incorporates a randomized 
work-stealing scheduler that has strong theoretical bounds on 
its running time which are similar to those for greedy scheduling

⚫ Loops in Cilk are synthesized using divide-and-conquer 
spawning, which incurs linear work and logarithmic span

⚫ Coarsening recursion can reduce loop overhead
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