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Nested Parallelism in Cilk

int64_t fib(int64_t n) { 
  if (n < 2)
    return n; 
  int64_t x, y;
  cilk_scope {
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
  }
  return (x + y);
}

The named child function 
may execute in parallel 
with the parent caller

Control cannot exit this 
context until all spawned 
children have returned

⚫ Cilk keywords grant permission for parallel execution 

⚫ They do not command parallel execution
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Loop Parallelism in Cilk

The iterations of a cilk_for 
loop execute in parallel

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
    for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}

Example: 
In-place matrix 
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮

a1n a2n ⋯ ann

A AT
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DETERMINACY RACES
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Race Conditions

Race bugs are notoriously difficult to 
discover by conventional testing!

⚫ Famous race bugs include 
 Therac-25 radiation therapy machine — 

killed 3 people and seriously injured many

 Northeast Blackout of 2003 — left 50 
million people without power

⚫ Race conditions are the bane of concurrency

6
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Race Condition

⚫ Arise when multiple code paths executing at the same time

⚫ Multiple code paths take a different amount of time than expected
 they can finish in a different order than expected

7
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Race Condition

⚫ Arise when multiple code paths executing at the same time

⚫ Multiple code paths take a different amount of time than expected
 they can finish in a different order than expected

⚫ A data race is a type of race condition
 A C/C++ program containing a data race has undefined behavior

⚫ Hard to reproduce and debug as the result is nondeterministic

8
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int x = 0;
cilk_for (int i=0, i<2, ++i) {
    x++;
}
assert(x == 2);

Determinacy Races

Definition. A determinacy race occurs when two logically parallel instructions access 
the same memory location and at least one of the instructions performs a write.

A

B C

D

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

Example

Trace
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A Closer Look

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D
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Race Bugs

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

Which of these four pairs of 
instructions race?

1

2 3

4

a.  

b.  

c.  

d.  

e.  

f.  

g.  

h.  

i.  

j. None of the above.

1
2
3
4
1 2
2 3
3 4
1 2 3
2 3 4

Definition. A determinacy race occurs when two logically parallel instructions access 
the same memory location and at least one of the instructions performs a write.
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Race Bugs

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

Which of these four pairs of 
instructions race?

1

2 3

4

a.  

b.  

c.  

d.  

e.  

f.  

g.  

h.  

i.  

j. None of the above.

1
2
3
4
1 2
2 3
3 4
1 2 3
2 3 4

Definition. A determinacy race occurs when two logically parallel instructions access 
the same memory location and at least one of the instructions performs a write.
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Race Bugs

1

2

3

4

5

67

8

?

x

?

r1

?

r2

00

01

0

011

1

1

1

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

Definition. A determinacy race occurs when two logically parallel instructions access 
the same memory location and at least one of the instructions performs a write.
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Race Bugs

1

2

3

4

5

67

8

?

x

?

r1

?

r2

00

01

0

011

1

1

1

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

Definition. A determinacy race occurs when two logically parallel instructions access 
the same memory location and at least one of the instructions performs a write.

15



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Types of Races

A B Race Type

read read none

read write read race

write read read race

write write write race

Two sections of code are independent if they 
have no determinacy races between them.

Suppose that instruction A and instruction B both access 
a location x, and suppose that A∥B (A is parallel to B).  

16
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Avoiding Races

struct {
  char a;
  char b;
} x;

Ex. Updating x.a and x.b in parallel may cause 
a race!  Nasty, because it may depend on the 
compiler optimization level.  (Safe on x86-64)

⚫ Iterations of a cilk_for should be independent.

⚫ After a cilk_spawn, the code executed by the spawned task should be 
independent of the subsequent code executed by the parent and any tasks 
that the parent spawns or calls, until the cilk_scope block is exited
 arguments to a spawned function are evaluated in the parent before the spawn occurs

⚫ Machine word size matters.  Watch out for races in packed data structures:

17
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Cilksan Race Detector

• Compile with –fsanitize=cilk to produce a Cilksan-instrumented program

• If there is a determinacy race on a given input, Cilksan guarantees to find it

• Cilksan employs a regression-test methodology, where the programmer 
provides test inputs

• Cilksan identifies filenames, lines, and variables involved in races, including 
stack traces

• Ensure that all program files are instrumented, or you’ll miss some bugs

• Cilksan is your best friend. 

18
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Race Example: Queens

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c

19
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OpenCilk Cilksan Execution

runtime overhead is nearly constant 
compared with a serial execution

∙ ~7× slower for this example

$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

20
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Cilksan Report

ASCII art on the left edge 
depicts the race context.

$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal
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Cilksan Report
$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
* Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|* Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

ASCII art on the left edge 
depicts the race context.

* = racing instructions

22
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Cilksan Report
$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

ASCII art on the left edge 
depicts the race context.

* = racing instructions
+ = stack frames (call/spawn)
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Cilksan Report
$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

ASCII art on the left edge 
depicts the race context.

* = racing instructions
+ = stack frames (call/spawn)
|/ = common calling context
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Cilksan Report
$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+ Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

ASCII art on the left edge 
depicts the race context.

* = racing instructions
+ = stack frames (call/spawn)
|/ = common calling context
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Cilksan Report
$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)
Alloc 43eef8 in nqueens ./nqueens.c:86:16
Call 43f73b nqueens ./nqueens.c:91:29
Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

ASCII art on the left edge 
depicts the race context.

* = racing instructions
+ = stack frames (call/spawn)
|/ = common calling context
⎵  = allocation context

26
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Tips for Effective Performance Engineering

Good code hygiene
enables fast code

⚫ Maintain the invariant that your code is correct.

⚫ Regression test heavily and automatically to ensure correctness.

⚫ Don’t be a slob: Treat your source code with respect.
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WHAT IS PARALLELISM?
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Execution Model

int64_t fib(int64_t n) { 
  if (n < 2)
    return n; 
  int64_t x, y;
  cilk_scope {
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
  }
  return (x + y);
}

29
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int64_t fib(int64_t n) { 
  if (n < 2)
    return n; 
  int64_t x, y;
  cilk_scope {
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
  }
  return (x + y);
}

Execution Model

The trace unfolds 
dynamically.

Example: 
fib(4)

“Processor 
oblivious”

4

3

2

2

1

1 1 0

0

strand

30
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Trace DAG

● A parallel instruction stream (trace) is a dag G = (V, E ).

● Each vertex v ∈ V is a strand: a sequence of instructions not 
containing a spawn, sync, or return from a spawn.

● An edge e ∈ E is a spawn, call, return, or continue edge.

● The compiler converts loop parallelism (cilk_for) to spawns 
and syncs using recursive divide-and-conquer.

spawn edge
return edge

continue edge

initial strand final strand

strand

call edge

31
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How Much Parallelism?

Assuming that each strand executes in unit time, 
what is the parallelism of this computation?

In other words, what is the maximum possible speedup 
of this computation, where speedup is how much faster 
the parallel code runs compared to the serial code?

32
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Example Trace Dag

Q. What is the parallelism 
(maximum possible speedup) of 
this computation, assuming that 
each strand executes in unit time?  
Pick the closest number.
a. 1
b. 2
c. 3
d. 4
e. 5
f. 6

33
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Amdahl’s “Law”

Gene M. Amdahl

If 50% of your application is parallel 
and 50% is serial, you can’t get more 
than a factor of 2 speedup, no matter 
how many processors it runs on.*

*Paraphrased.
34
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Amdahl’s “Law”

⚫ In general, if a fraction α of an application must be run serially, 

the speedup can be at most 1/α.

35

Speedup =
1

𝛼+
1−𝛼

𝑃

α is the a fraction of the application must be run serially
𝑷 is the number of processors
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Quantifying Parallelism

What is the parallelism of this computation?

Amdahl’s Law says that since the 
serial fraction is 3/18 = 1/6, the 
speedup is upper-bounded by 6.

But this bound is weak.

36
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Performance Measures

TP = execution time on 𝑷 processors

T1 = work

= 18

37
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Performance Measures

= 18 = 9

T1 = work T∞ = span*

* Also called critical-path length
 or computational depth.

TP = execution time on 𝑷 processors

38
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* Also called critical-path length
 or computational depth.

WORK LAW

TP ≥T1/P

SPAN LAW

TP ≥ T∞

Performance Measures

TP = execution time on 𝑷 processors

= 18 = 9

T1 = work T∞ = span*

39
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Work: T1(A∪B) =Work:  T1(A∪B) = T1(A) + T1(B)

Series Composition

A B

Span: T∞(A∪B) = T∞(A) + T∞(B)Span: T∞(A∪B) =

40



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1(A∪B) =Work: T1(A∪B) = T1(A) + T1(B)

Parallel Composition

A

B

Span:  T∞(A∪B) = max{T∞(A), T∞(B)}Span: T∞(A∪B) =

41
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Definition. T1/TP = speedup on P processors.

● If T1/TP = P, we have (perfect) linear speedup.

● If T1/TP < P, we have sublinear speedup. 

● If T1/TP > P, we have superlinear speedup, which is 
not possible in this simple performance model, 
because of the WORK LAW TP ≥ T1/P.

Speedup

42
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Parallelism

As the SPAN LAW dictates that TP ≥ T∞, the 
maximum possible speedup given T1 and T∞ is

T1/T∞ = parallelism

 = the average amount of work 
  per step along the span

 = 18/9

 = 2 .
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Amdahl’s Law for a program where α of T1 must run serially:  

Speedup = T1/TP = 
αT1 + (1- α)T1/P

T1

3 + 15/2

18

α 

1
= 

T1/T∞ = 18/9 = 2

= 

= 

P => ∞ =  6

P = 2 = 1.7

P = 10
3 + 15/10

18
= 4.0 ?

ignores how much
of parallelism can 
actually be attained 
due to dependencies

=
1

𝛼+
1−𝛼

𝑃

Amdahl’s Law vs. the Span Law 
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Parallelism: T1/T∞ =Parallelism: T1/T∞ = 2.125

Work:  T1 = 17Work: T1 = 

Span: T∞ = 8Span: T∞ =

Example: fib(4)

Assume for simplicity that 
each strand in fib(4) 
takes unit time to execute

4

5

6

1

2 7

8

3

Using many more than 2 processors can 
yield only marginal performance gains.
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THE CILKSCALE SCALABILITY 
ANALYZER
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Cilkscale Scalability Analyzer

⚫ The OpenCilk compiler provides a scalability analyzer called Cilkscale

⚫ Like the Cilksan race detector, Cilkscale uses compiler instrumentation to 
analyze a serial execution of a program

⚫ Cilkscale computes work and span to derive upper bounds on parallel 
performance of all or just part of your program

⚫ Cilkscale is really three tools in one:
 an analyzer,

 an autobenchmarker,

 a visualizer.
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Quicksort
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static void qsort(int * begin, int * end)
{
  if (begin < end) {
     int last = *(end - 1);
     // linear-time partition
     int * middle = partition(begin, end - 1, last);
     // move pivot to middle  
     swap(end - 1, middle); 
     // recurse 
     qsort(begin, middle);
     qsort(middle + 1, end);
}

Parallelizing Quicksort

Example: quicksort
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Example: Parallel quicksort

Parallelizing Quicksort

Analyze the sorting of 10,000,000 numbers.  ⋆⋆⋆ Guess the parallelism! ⋆⋆⋆

static void p_qsort(int* begin, int* end)
{
  if (begin < end) {
     int last = *(end - 1);
     // linear-time partition
     int * middle = partition(begin, end - 1, last);
     // move pivot to middle  
     swap(end - 1, middle); 
     // recurse
     cilk_scope {
       cilk_spawn p_qsort(begin, middle);
       p_qsort(middle + 1, end);
     }
}
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Cilkscale: Scalability Visualizer

execution time speedup

51



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilkscale: Scalability Visualizer

execution time speedup

Measured 
runtime

Cilksan autobenchmarks the code, running it on 1, 2, 3, … processors, 
and the visualizer displays the results.

Measured 
speedup
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Cilkscale: Speedup Analysis

speedup

SPAN LAW

T1/TP ≤ T1/T∞ 

Cilkscale’s analyzer determines the work 
and span. 

The visualizer plots the WORK and SPAN 
LAWS.

The visualizer also plots burdened 
parallelism, which indicates whether the 
program may incur scheduling overhead

WORK LAW

T1/TP ≤ P

burdened 
parallelism
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Expected work = Θ(n lg n)
Expected span = Θ(n)
Parallelism = Θ(lg n)

Example: Parallel quicksort

Theoretical Analysis

static void p_qsort(int* begin, int* end) {
  if (begin < end) {
     int last = *(end - 1);
     // linear-time partition
     int * middle = partition(begin, end - 1, last);
     // move pivot to middle  
     swap(end - 1, middle); 
     // recurse
     cilk_scope {
       cilk_spawn p_qsort(begin, middle);
       p_qsort(middle + 1, end);
     }
}

puny
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Interesting Practical* Algorithms

Algorithm Work Span Parallelism

Merge sort Θ(n lg n) Θ(lg3n) Θ(n/lg2n)

Matrix multiplication Θ(n3) Θ(lg n) Θ(n3/lg n)

Strassen Θ(nlg7) Θ(lg2n) Θ(nlg7/lg2n)

LU-decomposition Θ(n3) Θ(n lg n) Θ(n2/lg n)

Tableau construction Θ(n2) Θ(nlg3) Θ(n2-lg3)

FFT Θ(n lg n) Θ(lg2n) Θ(n/lg n)

Breadth-first search Θ(E) Θ(Δ lg V) Θ(E/Δ lg V)

*Cilk on 1 processor competitive with the best C. 
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Take-Aways

∙Determinacy races are usually bugs.

∙Determinacy races can be detected and localized using Cilksan 

 and a good regression-testing methodology

∙ The WORK & SPAN LAWS provide lower bounds on the parallelism 

 maximum possible speedup

∙ Cilkscale can analyze the work, span, and parallelism of a computation

∙Many highly parallel and work-efficient algorithms can be programmed in Cilk
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