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Nested Parallelism in Cilk

| L2 g e W s 57 e 1)
1y MM T4
return n;

1NE644T sXs' V5

cilk scope {

X = cilk spawn fib(n-1);

Vil e o 7 200

The named child function
may execute In parallel
with the parent caller

Control cannot exit this
context until all spawned
children have returned

return (X + Vy);

e Cilk keywords grant permission for parallel execution
e They do not command parallel execution
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Loop Parallelism in Cilk

Example:
In-place matrix
transpose

The iterations of a cilk for
loop execute In parallel
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DETERMINACY RACES
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Race Conditions

e Race conditions are the bane of concurrency

e Famous race bugs include

o Therac-25 radiation therapy machine —
killed 3 people and seriously injured many

o Northeast Blackout of 2003 — left 50
million people without power

Race bugs are notoriously difficult to
discover by conventional testing!
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Race Condition

e Arise when multiple code paths executing at the same time

o Multiple code paths take a different amount of time than expected
o they can finish in a different order than expected

thread-1

thread-2
e———
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Race Condition

e Arise when multiple code paths executing at the same time

o Multiple code paths take a different amount of time than expected
o they can finish in a different order than expected

e A data race Is a type of race condition
oA C/C++ program containing a data race has undefined behavior

e Hard to reproduce and debug as the result Is nondeterministic
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Determinacy Races

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

Trace
Exampl 9
ampile int x = 0;
@int X md0; ¥ 1 Y
G AL O S iRt = Oy, T2 W H18) -
@@ X++,; @ X++; X++; e
}
@asser‘t(x == T
assert(x == 2);
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A Closer Look

X = 0;
int x = 0; rl = X; r2
¥ I L4 wl
Q| x++; x++; |@ rl++; r
¥ X = ril; X
assert(x == 2); | ]
assert(x == 2);
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Race Bugs

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

Which of these four pairs of
Instructions race?

X = 0;

V_I_V a. g
rl = X; «» r2 = X; b.
c. ©
r‘l!+; x r‘2!+; d. 3@
X =lr‘1; w X =lr‘2, fe'. gg
——T | eee
assert(x == 2); o I3]4)
].  None of the above.
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Race Bugs

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

Which of these four pairs of
Instructions race?

X = 0;

V_I_V a. g
rl = X; «» r2 = X; b.
c. ©
r‘l!+; x r‘2!+; d. 3@
X =lr‘1; w X =lr‘2, fe'. gg
——T | eee
assert(x == 2); . )OO
].  None of the above.
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Race Bugs

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

O

©
=7 YE

% rl r2
@ assert(x == 2);
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Race Bugs

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

O

©
=7 YE

% rl r2
@ assert(x == 2);
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Types of Races

Suppose that instruction A and instruction B both access
a location x, and suppose that A//B (A is parallel to B).

A B Race Type
read read none
read write read race
write read read race
write write write race

Two sections of code are independent If they
have no determinacy races between them.
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Avoiding Races

e |terations of a cilk for should be independent.

o After a cilk spawn, the code executed by the spawned task should be
Independent of the subsequent code executed by the parent and any tasks
that the parent spawns or calls, until the cilk scope block is exited
o arguments to a spawned function are evaluated in the parent before the spawn occurs

e Machine word size matters. Watch out for races in packed data structures:

struct { Ex. Updating x.a and x.b in parallel may cause
EEZ: ‘;f a race! Nasty, because it may depend on the

X compiler optimization level. (Safe on x86-64)
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Cilksan Race Detector

* Compile with —=fsanitize=cilk to produce a Cilksan-instrumented program
* |f there Is a determinacy race on a given input, Cilksan guarantees to find it

* Cilksan employs a regression-test methodology, where the programmer
provides test iInputs

* Cilksan identifies filenames, lines, and variables involved in races, including
stack traces

* Ensure that all program files are instrumented, or you'll miss some bugs

* Cilksan Is your best friend.
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Race Example: Queens

b = (char*) alloca((j+1) * sizeof(char));
memcpy (b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);
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OpenCilk Cilksan Execution

memcpy(b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %

if (ok(j+1,b))

b = (char*) alloca((j+1) * sizeof(char));

b[j] = i; /* <-- racy write! */

cnt[i] = cilk_spawn nqueens(n,j+1,b);

4

runtime overhead Is nearly constant

compared with a serial execution

e ~/x slower for this example
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$ ./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

i Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|*  Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+  Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$
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Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy (b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[ 7

ASCII art on the left edge
depicts the race context.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

$ ./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

s Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|*  Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+  Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$
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Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy (b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[ 7

ASCII art on the left edge
depicts the race context.

* = racing instructions
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$ ./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

g Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|& - nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+  Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$
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Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[ 7

ASCII art on the left edge
depicts the race context.

* = racing instructions
+ = stack frames (call/spawn)
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$ ./nqueens 12 ' terminal
Running Cilksan race detector e ettt
Running ./nqueens with n = 12.

Race detected at address 7f7db6cOf2e6

i Read nqueens ./nqueens.c:87:3

"-to variable a (declared at nqueens.c:50)

I

i Call nqueens ./nqueens.c:91:29

+  Spawn nqueens ./nqueens.c:91:29

|*  Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+  Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$
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Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[ 7

ASCII art on the left edge
depicts the race context.
* = racing instructions

+ = stack frames (call/spawn)
| / = common calling context
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$ ./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

i Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|*  Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+  Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$
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Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[ 7

ASCII art on the left edge
depicts the race context.
* = racing instructions

+ = stack frames (call/spawn)
| / = common calling context
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$ ./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

i Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|*  Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ nqueens ./nqueens.c:91:29

+ [Spawn nqueens ./nqueens.c:91:29

+ [Gal main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$
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Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy (b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[ 7

ASCII art on the left edge
depicts the race context.

* = racing instructions

+ = stack frames (call/spawn)

| / = common calling context
= allocation context
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$ ./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

i Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|*  Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+  Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

‘eclar‘ed at ./nqueens.c:53)
Alloc

in nqueens ./nqueens.c:86:16
nqueens ./nqueens.c:91:29
nqueens ./nqueens.c:91:29

Call main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$




Tips for Effective Performance Engineering

e Maintain the invariant that your code Is correct.
e Regression test heavily and automatically to ensure correctness.
e Don't be a slob: Treat your source code with respect.

Good code hygiene
enables fast code

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 27



WHAT IS PARALLELISM?
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Execution Model

TG ATl (eG4 TRy i

1 8 AR T4
return n;

1 g s 7T e AR T

cilk scope {
X = cilk spawn fib(n-1);
Y=t 1D G2y

}

return (X + y);
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Execution Model

int64 t fib(int64 t n) {
Lrein S |
return n; E>§ample.
int64 t x, y; fib(4)
cilk scope { 4
X = cilk spawn fib(n-1); . strand

return (X + y); i AJ

. U]
oblivious” U u

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

The trace unfolds
dynamically.




Trace DAG

initial strand final strand

continue edge ~N strand

spawn edge return edge

call edge

e A parallel instruction stream (trace)isadag G = (V, E).

e Each vertex v € Vs a strand: a sequence of instructions not
containing a spawn, sync, or return from a spawn.

e An edge e € E s a spawn, call, return, orcontinue edge.

e The compiler converts loop parallelism (cilk for) to spawns
and syncs using recursive divide-and-conquer.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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How Much Parallelism?

Assuming that each strand executes in unit time,
what Is the parallelism of this computation?

In other words, what is the maximum possible speedup
of this computation, where speedup Is how much faster
the parallel code runs compared to the serial code?

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Example Trace Dag

Q. What is the parallelism
(maximum possible speedup) of
this computation, assuming that
each strand executes Iin unit time?
Pick the closest number.

1

D Q00w
O OB WM
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Amdahl’s “Law”

If 50% of your application is parallel
and 50% is serial, you can’t get more

Gene M. Amdahl

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

\\

than a factor of 2 speedup, no matter

/ how many processors It runs on.*

/

*Paraphrased.
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Amdahl’s “Law”

e [n general, If a fraction o of an application must be run serially,
the speedup can be at most 1/a.

Speedup = - 11_a

+—-

o IS the a fraction of the application must be run serially
P Is the number of processors

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Quantifying Parallelism

What is the parallelism of this computation?

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Amdahl’s Law says that since the
serial fraction is 3/18 = 1/6, the

speedup Is upper-bounded by 6.

But this bound Is weak.
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Performance Measures

T, = execution time on P processors

work
18

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Performance Measures

T, = execution time on P processors

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

T, = work Tew = Spanx
=18 =

*Also called critical-path length
or computational depth.

38



Performance Measures

T, = execution time on P processors

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

T, = work Tew = Spanx
=18 =9
| WORK LAW |
To =T/P
- SpaN Law |
To=To |

*Also called critical-path length
or computational depth.
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Series Composition

Work: T{(AUB) = T4(A) + T(B)
Span: Tew(AUB) = Tw(A) + To(B)
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Parallel Composition

Work: T{(AUB) = T,(A) + T,(B)
Span: Te(AUB) = max{T»(A), Tw(B)}

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Speedup

Definition. T,/T, = speedup on P processors.

o IfT,/Tp, =P, we have (perfect) linear speedup.
o [fT/Tp < P,we have sublinear speedup.

e IfT,/T, > P, we have superlinear speedup, which is
not possible in this simple performance model,
because of the WORK LAwW T, = T,/P.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Parallelism

As the SPAN LAW dictates that T, = T4, the
maximum possible speedup given T, and Ty IS

T,/Tw = parallelism

the average amount of work
per step along the span

= 18/9
= 2.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Amdahl’s Law vs. the Span Law

Amdahl’s Law for a program where o of T; must run serially:

. 1
. —_
Speedup = T/Tp = — T 11—«
O(Tl + a+_
P
1
P=>0 = — = 0§
A ignores how much
of parallelism can
_ _ 18 _ actually be attained
P=2 = =1.7 due 1o d denci
T/Te = 18/9 = 2 3+ 15/2 ue to dependencies
18
P=10 = =40 ?
3+ 15/10
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Example: fib(4)

Assume for simplicity that
each strand in fib(4)
takes unit time to execute

Work: T, =17
Span: T, =38
Parallelism: T,/To = 2.125

|

Using many more than 2 processors can
yield only marginal performance gains.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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THE CILKSCALE SCALABILITY
ANALYZER

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Cilkscale Scalability Analyzer

e The OpenCilk compiler provides a scalability analyzer called Cilkscale

e Like the Cilksan race detector, Cilkscale uses compiler instrumentation to
analyze a serial execution of a program

e Cilkscale computes work and span to derive upper bounds on parallel
performance of all or just part of your program

e Cilkscale Is really three tools in one:
o an analyzer,
o an autobenchmarker,
o a visualizer.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Quicksort

Pivot

9 |-3|] 5|2 |6]|8]-6]1
<=3
3] 2|6 1
<=1 ==1 >=6
-3 | -6 2 8
== b6 ==8
OlE :
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Parallelizing Quicksort

Example: quicksort

{

static void gsort(int * begin, int * end)

if (begin < end) {
int last = *(end - 1);
// linear-time partition
int * middle = partition(begin, end - 1, last);
// move pivot to middle
swap(end - 1, middle);
// recurse
gsort(begin, middle);
gsort(middle + 1, end);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Parallelizing Quicksort

Example: Parallel quicksort

static void p_gsort(int* begin, int* end)
{
if (begin < end) {
intlkast *=* (ehd = 1%
// linear-time partition
int * middle = partition(begin, end - 1, last);
// move pivot to middle
swap(end - 1, middle);
// recurse
cilk scope {
cilk _spawn p _gsort(begin, middle);
p_gsort(middle + 1, end);
}

4

Analyze the sorting of 10,000,000 numbers. Guess the parallelism!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Cilkscale: Scalability Visualizer

sample_gsort execution time

1.0 1

0.8

Runtime

0 5 10 15 20 25 30 35 40
Num workers

execution time
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sample_qsort speedup

40
® Observed
—— Perfect linear speedup
351 — Burdened-dag bound
—— Span bound
30
25
o
=1
o
(]
[0}
[=3
wn

15

20 25
Num workers

speedup

30 35 40



Cilkscale: Scalability Visualizer

sample_gsort execution time 20 sample_qsort speedup
@ Observed
—— Perfect linear speedup
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Cilksan autobenchmarks the code, running it on 1, 2, 3, -* processors,
and the visualizer displays the results.
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Cilkscale: Speedup Analysis

Cilkscale’s analyzer determines the work
and span.

The visualizer plots the WORK and SPAN
LAWS.

The visualizer also plots burdened
parallelism, which indicates whether the
program may incur scheduling overhead
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Theoretical Analy

Parallel quicksort

SIS

static void p_gsort(int* begin, int* end) {
if (begin < end) {

int last = *(end - 1);

// linear-time partition

int * middle = partition(begin, end -

// move pivot to middle

swap(end - 1, middle);

// recurse

cilk scope {
cilk _spawn p_gsort(begin, middle);
p_qsort(middle + 1, end);

}

d,digst )

>

Expected work = @(n Ig n)
Expected span = ©(n) »

puny

Parallelism = O(lgn) =

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

.

o4



Interesting Practical* Algorithms

Algorithm Parallelism

Merge sort O(nlgn) O(gn) O(n/Ig?n)
Matrix multiplication O(n3) O(lgn) O(n3/Ign)
Strassen ©(n'9") O(lg®n) O(n'9’/Ig°n)
LU-decomposition O(n3) O(nlgn)  O©(n%/Ign)
Tableau construction O(n?) ©(n'93) ©(n?-'93)
FFT O(nlgn) O(g°n) O(n/Ign)
Breadth-first search O(E) OAlgV) OE/AlgV)

*Cllk on 1 processor competitive with the best C.
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Take-Aways

e Determinacy races are usually bugs.

e Determinacy races can be detected and localized using Cilksan
oand a good regression-testing methodology

e The WORK & SPAN LAWS provide lower bounds on the parallelism
o maximum possible speedup

e Cilkscale can analyze the work, span, and parallelism of a computation

e Many highly parallel and work-efficient algorithms can be programmed in Cilk
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