
Software Performance Engineering

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

LECTURE 8
Races and Parallelism

Xuhao Chen
October 9, 2025

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Nested Parallelism in Cilk

int64_t fib(int64_t n) {
 if (n < 2)
 return n;
 int64_t x, y;
 cilk_scope {
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 }
 return (x + y);
}

The named child function
may execute in parallel
with the parent caller

Control cannot exit this
context until all spawned
children have returned

⚫ Cilk keywords grant permission for parallel execution

⚫ They do not command parallel execution

2

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Loop Parallelism in Cilk

The iterations of a cilk_for
loop execute in parallel

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

Example:
In-place matrix
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮

a1n a2n ⋯ ann

A AT

3

SPEED
LIMIT

∞
PER ORDER OF SPE

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

DETERMINACY RACES

5

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Race Conditions

Race bugs are notoriously difficult to
discover by conventional testing!

⚫ Famous race bugs include
 Therac-25 radiation therapy machine —

killed 3 people and seriously injured many

 Northeast Blackout of 2003 — left 50
million people without power

⚫ Race conditions are the bane of concurrency

6

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Race Condition

⚫ Arise when multiple code paths executing at the same time

⚫ Multiple code paths take a different amount of time than expected
 they can finish in a different order than expected

7

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Race Condition

⚫ Arise when multiple code paths executing at the same time

⚫ Multiple code paths take a different amount of time than expected
 they can finish in a different order than expected

⚫ A data race is a type of race condition
 A C/C++ program containing a data race has undefined behavior

⚫ Hard to reproduce and debug as the result is nondeterministic

8

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

int x = 0;
cilk_for (int i=0, i<2, ++i) {
 x++;
}
assert(x == 2);

Determinacy Races

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

A

B C

D

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

Example

Trace

10

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

A Closer Look

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

11

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Race Bugs

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

Which of these four pairs of
instructions race?

1

2 3

4

a.

b.

c.

d.

e.

f.

g.

h.

i.

j. None of the above.

1
2
3
4
1 2
2 3
3 4
1 2 3
2 3 4

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

12

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Race Bugs

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

Which of these four pairs of
instructions race?

1

2 3

4

a.

b.

c.

d.

e.

f.

g.

h.

i.

j. None of the above.

1
2
3
4
1 2
2 3
3 4
1 2 3
2 3 4

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

13

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Race Bugs

1

2

3

4

5

67

8

?

x

?

r1

?

r2

00

01

0

011

1

1

1

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

14

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Race Bugs

1

2

3

4

5

67

8

?

x

?

r1

?

r2

00

01

0

011

1

1

1

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

15

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Types of Races

A B Race Type

read read none

read write read race

write read read race

write write write race

Two sections of code are independent if they
have no determinacy races between them.

Suppose that instruction A and instruction B both access
a location x, and suppose that A∥B (A is parallel to B).

16

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Avoiding Races

struct {
 char a;
 char b;
} x;

Ex. Updating x.a and x.b in parallel may cause
a race! Nasty, because it may depend on the
compiler optimization level. (Safe on x86-64)

⚫ Iterations of a cilk_for should be independent.

⚫ After a cilk_spawn, the code executed by the spawned task should be
independent of the subsequent code executed by the parent and any tasks
that the parent spawns or calls, until the cilk_scope block is exited
 arguments to a spawned function are evaluated in the parent before the spawn occurs

⚫ Machine word size matters. Watch out for races in packed data structures:

17

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilksan Race Detector

• Compile with –fsanitize=cilk to produce a Cilksan-instrumented program

• If there is a determinacy race on a given input, Cilksan guarantees to find it

• Cilksan employs a regression-test methodology, where the programmer
provides test inputs

• Cilksan identifies filenames, lines, and variables involved in races, including
stack traces

• Ensure that all program files are instrumented, or you’ll miss some bugs

• Cilksan is your best friend.

18

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Race Example: Queens

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c

19

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

OpenCilk Cilksan Execution

runtime overhead is nearly constant
compared with a serial execution

∙ ~7× slower for this example

$./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
* Read 43ef18 nqueens ./nqueens.c:87:3
| `-to variable a (declared at nqueens.c:50)
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
|* Write 43efa9 nqueens ./nqueens.c:89:10
|| `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+ Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

20

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilksan Report

ASCII art on the left edge
depicts the race context.

$./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
* Read 43ef18 nqueens ./nqueens.c:87:3
| `-to variable a (declared at nqueens.c:50)
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
|* Write 43efa9 nqueens ./nqueens.c:89:10
|| `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+ Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

21

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilksan Report
$./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
* Read 43ef18 nqueens ./nqueens.c:87:3
| `-to variable a (declared at nqueens.c:50)
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
|* Write 43efa9 nqueens ./nqueens.c:89:10
|| `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+ Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

ASCII art on the left edge
depicts the race context.

* = racing instructions

22

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilksan Report
$./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
* Read 43ef18 nqueens ./nqueens.c:87:3
| `-to variable a (declared at nqueens.c:50)
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
|* Write 43efa9 nqueens ./nqueens.c:89:10
|| `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+ Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

ASCII art on the left edge
depicts the race context.

* = racing instructions
+ = stack frames (call/spawn)

23

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilksan Report
$./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
* Read 43ef18 nqueens ./nqueens.c:87:3
| `-to variable a (declared at nqueens.c:50)
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
|* Write 43efa9 nqueens ./nqueens.c:89:10
|| `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+ Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

ASCII art on the left edge
depicts the race context.

* = racing instructions
+ = stack frames (call/spawn)
|/ = common calling context

24

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilksan Report
$./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
* Read 43ef18 nqueens ./nqueens.c:87:3
| `-to variable a (declared at nqueens.c:50)
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
|* Write 43efa9 nqueens ./nqueens.c:89:10
|| `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+ Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

ASCII art on the left edge
depicts the race context.

* = racing instructions
+ = stack frames (call/spawn)
|/ = common calling context

25

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilksan Report
$./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
* Read 43ef18 nqueens ./nqueens.c:87:3
| `-to variable a (declared at nqueens.c:50)
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
|* Write 43efa9 nqueens ./nqueens.c:89:10
|| `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+ Call 43f42b main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)
Alloc 43eef8 in nqueens ./nqueens.c:86:16
Call 43f73b nqueens ./nqueens.c:91:29
Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal

ASCII art on the left edge
depicts the race context.

* = racing instructions
+ = stack frames (call/spawn)
|/ = common calling context
⎵ = allocation context

26

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Tips for Effective Performance Engineering

Good code hygiene
enables fast code

⚫ Maintain the invariant that your code is correct.

⚫ Regression test heavily and automatically to ensure correctness.

⚫ Don’t be a slob: Treat your source code with respect.

27

SPEED
LIMIT

∞
PER ORDER OF SPE

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

WHAT IS PARALLELISM?

28

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Execution Model

int64_t fib(int64_t n) {
 if (n < 2)
 return n;
 int64_t x, y;
 cilk_scope {
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 }
 return (x + y);
}

29

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

int64_t fib(int64_t n) {
 if (n < 2)
 return n;
 int64_t x, y;
 cilk_scope {
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 }
 return (x + y);
}

Execution Model

The trace unfolds
dynamically.

Example:
fib(4)

“Processor
oblivious”

4

3

2

2

1

1 1 0

0

strand

30

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Trace DAG

● A parallel instruction stream (trace) is a dag G = (V, E).

● Each vertex v ∈ V is a strand: a sequence of instructions not
containing a spawn, sync, or return from a spawn.

● An edge e ∈ E is a spawn, call, return, or continue edge.

● The compiler converts loop parallelism (cilk_for) to spawns
and syncs using recursive divide-and-conquer.

spawn edge
return edge

continue edge

initial strand final strand

strand

call edge

31

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

How Much Parallelism?

Assuming that each strand executes in unit time,
what is the parallelism of this computation?

In other words, what is the maximum possible speedup
of this computation, where speedup is how much faster
the parallel code runs compared to the serial code?

32

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Example Trace Dag

Q. What is the parallelism
(maximum possible speedup) of
this computation, assuming that
each strand executes in unit time?
Pick the closest number.
a. 1
b. 2
c. 3
d. 4
e. 5
f. 6

33

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Amdahl’s “Law”

Gene M. Amdahl

If 50% of your application is parallel
and 50% is serial, you can’t get more
than a factor of 2 speedup, no matter
how many processors it runs on.*

*Paraphrased.
34

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Amdahl’s “Law”

⚫ In general, if a fraction α of an application must be run serially,

the speedup can be at most 1/α.

35

Speedup =
1

𝛼+
1−𝛼

𝑃

α is the a fraction of the application must be run serially
𝑷 is the number of processors

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Quantifying Parallelism

What is the parallelism of this computation?

Amdahl’s Law says that since the
serial fraction is 3/18 = 1/6, the
speedup is upper-bounded by 6.

But this bound is weak.

36

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Performance Measures

TP = execution time on 𝑷 processors

T1 = work

= 18

37

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Performance Measures

= 18 = 9

T1 = work T∞ = span*

* Also called critical-path length
 or computational depth.

TP = execution time on 𝑷 processors

38

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

* Also called critical-path length
 or computational depth.

WORK LAW

TP ≥T1/P

SPAN LAW

TP ≥ T∞

Performance Measures

TP = execution time on 𝑷 processors

= 18 = 9

T1 = work T∞ = span*

39

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1(A∪B) =Work: T1(A∪B) = T1(A) + T1(B)

Series Composition

A B

Span: T∞(A∪B) = T∞(A) + T∞(B)Span: T∞(A∪B) =

40

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work: T1(A∪B) =Work: T1(A∪B) = T1(A) + T1(B)

Parallel Composition

A

B

Span: T∞(A∪B) = max{T∞(A), T∞(B)}Span: T∞(A∪B) =

41

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Definition. T1/TP = speedup on P processors.

● If T1/TP = P, we have (perfect) linear speedup.

● If T1/TP < P, we have sublinear speedup.

● If T1/TP > P, we have superlinear speedup, which is
not possible in this simple performance model,
because of the WORK LAW TP ≥ T1/P.

Speedup

42

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Parallelism

As the SPAN LAW dictates that TP ≥ T∞, the
maximum possible speedup given T1 and T∞ is

T1/T∞ = parallelism

 = the average amount of work
 per step along the span

 = 18/9

 = 2 .

43

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Amdahl’s Law for a program where α of T1 must run serially:

Speedup = T1/TP =
αT1 + (1- α)T1/P

T1

3 + 15/2

18

α

1
=

T1/T∞ = 18/9 = 2

=

=

P => ∞ = 6

P = 2 = 1.7

P = 10
3 + 15/10

18
= 4.0 ?

ignores how much
of parallelism can
actually be attained
due to dependencies

=
1

𝛼+
1−𝛼

𝑃

Amdahl’s Law vs. the Span Law

44

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Parallelism: T1/T∞ =Parallelism: T1/T∞ = 2.125

Work: T1 = 17Work: T1 =

Span: T∞ = 8Span: T∞ =

Example: fib(4)

Assume for simplicity that
each strand in fib(4)
takes unit time to execute

4

5

6

1

2 7

8

3

Using many more than 2 processors can
yield only marginal performance gains.

45

SPEED
LIMIT

∞
PER ORDER OF SPE

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

THE CILKSCALE SCALABILITY
ANALYZER

46

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilkscale Scalability Analyzer

⚫ The OpenCilk compiler provides a scalability analyzer called Cilkscale

⚫ Like the Cilksan race detector, Cilkscale uses compiler instrumentation to
analyze a serial execution of a program

⚫ Cilkscale computes work and span to derive upper bounds on parallel
performance of all or just part of your program

⚫ Cilkscale is really three tools in one:
 an analyzer,

 an autobenchmarker,

 a visualizer.

47

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Quicksort

48

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

static void qsort(int * begin, int * end)
{
 if (begin < end) {
 int last = *(end - 1);
 // linear-time partition
 int * middle = partition(begin, end - 1, last);
 // move pivot to middle
 swap(end - 1, middle);
 // recurse
 qsort(begin, middle);
 qsort(middle + 1, end);
}

Parallelizing Quicksort

Example: quicksort

49

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Example: Parallel quicksort

Parallelizing Quicksort

Analyze the sorting of 10,000,000 numbers. ⋆⋆⋆ Guess the parallelism! ⋆⋆⋆

static void p_qsort(int* begin, int* end)
{
 if (begin < end) {
 int last = *(end - 1);
 // linear-time partition
 int * middle = partition(begin, end - 1, last);
 // move pivot to middle
 swap(end - 1, middle);
 // recurse
 cilk_scope {
 cilk_spawn p_qsort(begin, middle);
 p_qsort(middle + 1, end);
 }
}

50

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilkscale: Scalability Visualizer

execution time speedup

51

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilkscale: Scalability Visualizer

execution time speedup

Measured
runtime

Cilksan autobenchmarks the code, running it on 1, 2, 3, … processors,
and the visualizer displays the results.

Measured
speedup

52

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Cilkscale: Speedup Analysis

speedup

SPAN LAW

T1/TP ≤ T1/T∞

Cilkscale’s analyzer determines the work
and span.

The visualizer plots the WORK and SPAN
LAWS.

The visualizer also plots burdened
parallelism, which indicates whether the
program may incur scheduling overhead

WORK LAW

T1/TP ≤ P

burdened
parallelism

53

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Expected work = Θ(n lg n)
Expected span = Θ(n)
Parallelism = Θ(lg n)

Example: Parallel quicksort

Theoretical Analysis

static void p_qsort(int* begin, int* end) {
 if (begin < end) {
 int last = *(end - 1);
 // linear-time partition
 int * middle = partition(begin, end - 1, last);
 // move pivot to middle
 swap(end - 1, middle);
 // recurse
 cilk_scope {
 cilk_spawn p_qsort(begin, middle);
 p_qsort(middle + 1, end);
 }
}

puny

54

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Interesting Practical* Algorithms

Algorithm Work Span Parallelism

Merge sort Θ(n lg n) Θ(lg3n) Θ(n/lg2n)

Matrix multiplication Θ(n3) Θ(lg n) Θ(n3/lg n)

Strassen Θ(nlg7) Θ(lg2n) Θ(nlg7/lg2n)

LU-decomposition Θ(n3) Θ(n lg n) Θ(n2/lg n)

Tableau construction Θ(n2) Θ(nlg3) Θ(n2-lg3)

FFT Θ(n lg n) Θ(lg2n) Θ(n/lg n)

Breadth-first search Θ(E) Θ(Δ lg V) Θ(E/Δ lg V)

*Cilk on 1 processor competitive with the best C.

55

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Take-Aways

∙Determinacy races are usually bugs.

∙Determinacy races can be detected and localized using Cilksan

 and a good regression-testing methodology

∙ The WORK & SPAN LAWS provide lower bounds on the parallelism

 maximum possible speedup

∙ Cilkscale can analyze the work, span, and parallelism of a computation

∙Many highly parallel and work-efficient algorithms can be programmed in Cilk

56

	Slide 1: Lecture 8 Races and Parallelism
	Slide 2: Nested Parallelism in Cilk
	Slide 3: Loop Parallelism in Cilk
	Slide 5: Determinacy Races
	Slide 6: Race Conditions
	Slide 7: Race Condition
	Slide 8: Race Condition
	Slide 10: Determinacy Races
	Slide 11: A Closer Look
	Slide 12: Race Bugs
	Slide 13: Race Bugs
	Slide 14: Race Bugs
	Slide 15: Race Bugs
	Slide 16: Types of Races
	Slide 17: Avoiding Races
	Slide 18: Cilksan Race Detector
	Slide 19: Race Example: Queens
	Slide 20: OpenCilk Cilksan Execution
	Slide 21: Cilksan Report
	Slide 22: Cilksan Report
	Slide 23: Cilksan Report
	Slide 24: Cilksan Report
	Slide 25: Cilksan Report
	Slide 26: Cilksan Report
	Slide 27: Tips for Effective Performance Engineering
	Slide 28: What Is Parallelism?
	Slide 29: Execution Model
	Slide 30: Execution Model
	Slide 31: Trace DAG
	Slide 32: How Much Parallelism?
	Slide 33: Example Trace Dag
	Slide 34: Amdahl’s “Law”
	Slide 35: Amdahl’s “Law”
	Slide 36: Quantifying Parallelism
	Slide 37: Performance Measures
	Slide 38: Performance Measures
	Slide 39: Performance Measures
	Slide 40: Series Composition
	Slide 41: Parallel Composition
	Slide 42: Speedup
	Slide 43: Parallelism
	Slide 44: Amdahl’s Law vs. the Span Law
	Slide 45: Example: fib(4)
	Slide 46: The Cilkscale Scalability Analyzer
	Slide 47: Cilkscale Scalability Analyzer
	Slide 48: Quicksort
	Slide 49: Parallelizing Quicksort
	Slide 50: Parallelizing Quicksort
	Slide 51: Cilkscale: Scalability Visualizer
	Slide 52: Cilkscale: Scalability Visualizer
	Slide 53: Cilkscale: Speedup Analysis
	Slide 54: Theoretical Analysis
	Slide 55: Interesting Practical* Algorithms
	Slide 56: Take-Aways

