Software Performance Engineering

0.9

PER ORDER OF SPE

LECTURE 8
Races and Parallelism

Xuhao Chen
October 9, 2025

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Nested Parallelism in Cilk

| L2 g e W s 57 e 1)
1y MM T4
return n;

1NE644T sXs' V5

cilk scope {

X = cilk spawn fib(n-1);

Vil e o 7 200

The named child function
may execute In parallel
with the parent caller

Control cannot exit this
context until all spawned
children have returned

return (X + Vy);

e Cilk keywords grant permission for parallel execution
e They do not command parallel execution

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Loop Parallelism in Cilk

Example:
In-place matrix
transpose

The iterations of a cilk for
loop execute In parallel

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

r

D e
dip dgp ... djp d11
dyp ... dop j|> dip Apy
ann aln aZn
J \\
A AT

// 1lndices run from @, not 1
CIL I for MELnTL IS sk 1€ ;™ T8 e
FOR “6int«5 =08 wi<d 5 i) * {
double temp = A[i][]];
A[i][]j] = A[J1[1];
A[j]1[1] = temp;

0.9

PER ORDER OF SPE

DETERMINACY RACES

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Race Conditions

e Race conditions are the bane of concurrency

e Famous race bugs include

o Therac-25 radiation therapy machine —
killed 3 people and seriously injured many

o Northeast Blackout of 2003 — left 50
million people without power

Race bugs are notoriously difficult to
discover by conventional testing!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Race Condition

e Arise when multiple code paths executing at the same time

o Multiple code paths take a different amount of time than expected
o they can finish in a different order than expected

thread-1

thread-2
e———

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Race Condition

e Arise when multiple code paths executing at the same time

o Multiple code paths take a different amount of time than expected
o they can finish in a different order than expected

e A data race Is a type of race condition
oA C/C++ program containing a data race has undefined behavior

e Hard to reproduce and debug as the result Is nondeterministic

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Determinacy Races

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

Trace
Exampl 9
ampile int x = 0;
@int X md0; ¥ 1 Y
G AL O S iRt = Oy, T2 W H18) -
@@ X++,; @ X++; X++; e
}
@asser‘t(x == T
assert(x == 2);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

A Closer Look

X = 0;
int x = 0; rl = X; r2
¥ I L4 wl
Q| x++; x++; |@ rl++; r
¥ X = ril; X
assert(x == 2); |]
assert(x == 2);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Race Bugs

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

Which of these four pairs of
Instructions race?

X = 0;

V_I_V a. g
rl = X; «» r2 = X; b.
c. ©
r‘l!+; x r‘2!+; d. 3@
X =lr‘1; w X =lr‘2, fe'. gg
——T | eee
assert(x == 2); o I3]4)
]. None of the above.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

12

Race Bugs

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

Which of these four pairs of
Instructions race?

X = 0;

V_I_V a. g
rl = X; «» r2 = X; b.
c. ©
r‘l!+; x r‘2!+; d. 3@
X =lr‘1; w X =lr‘2, fe'. gg
——T | eee
assert(x == 2); .)OO
]. None of the above.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

13

Race Bugs

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

O

©
=7 YE

% rl r2
@ assert(x == 2);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 14

Race Bugs

Definition. A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a write.

O

©
=7 YE

% rl r2
@ assert(x == 2);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 15

Types of Races

Suppose that instruction A and instruction B both access
a location x, and suppose that A//B (A is parallel to B).

A B Race Type
read read none
read write read race
write read read race
write write write race

Two sections of code are independent If they
have no determinacy races between them.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

16

Avoiding Races

e |terations of a cilk for should be independent.

o After a cilk spawn, the code executed by the spawned task should be
Independent of the subsequent code executed by the parent and any tasks
that the parent spawns or calls, until the cilk scope block is exited
o arguments to a spawned function are evaluated in the parent before the spawn occurs

e Machine word size matters. Watch out for races in packed data structures:

struct { Ex. Updating x.a and x.b in parallel may cause
EEZ: ‘;f a race! Nasty, because it may depend on the

X compiler optimization level. (Safe on x86-64)

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 17

Cilksan Race Detector

* Compile with —=fsanitize=cilk to produce a Cilksan-instrumented program
* |f there Is a determinacy race on a given input, Cilksan guarantees to find it

* Cilksan employs a regression-test methodology, where the programmer
provides test iInputs

* Cilksan identifies filenames, lines, and variables involved in races, including
stack traces

* Ensure that all program files are instrumented, or you'll miss some bugs

* Cilksan Is your best friend.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

18

Race Example: Queens

b = (char*) alloca((j+1) * sizeof(char));
memcpy (b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

19

OpenCilk Cilksan Execution

memcpy(b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %

if (ok(j+1,b))

b = (char*) alloca((j+1) * sizeof(char));

b[j] = i; /* <-- racy write! */

cnt[i] = cilk_spawn nqueens(n,j+1,b);

4

runtime overhead Is nearly constant

compared with a serial execution

e ~/x slower for this example

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

$./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

i Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|* Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$

20

Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy (b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[7

ASCII art on the left edge
depicts the race context.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

$./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

s Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|* Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$

21

Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy (b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[7

ASCII art on the left edge
depicts the race context.

* = racing instructions

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

$./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

g Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|& - nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$

22

Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[7

ASCII art on the left edge
depicts the race context.

* = racing instructions
+ = stack frames (call/spawn)

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

$./nqueens 12 ' terminal
Running Cilksan race detector e ettt
Running ./nqueens with n = 12.

Race detected at address 7f7db6cOf2e6

i Read nqueens ./nqueens.c:87:3

"-to variable a (declared at nqueens.c:50)

I

i Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|* Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$

23

Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[7

ASCII art on the left edge
depicts the race context.
* = racing instructions

+ = stack frames (call/spawn)
| / = common calling context

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

$./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

i Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|* Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$

24

Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[7

ASCII art on the left edge
depicts the race context.
* = racing instructions

+ = stack frames (call/spawn)
| / = common calling context

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

$./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

i Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|* Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ nqueens ./nqueens.c:91:29

+ [Spawn nqueens ./nqueens.c:91:29

+ [Gal main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)

Alloc in nqueens ./nqueens.c:86:16
Call nqueens ./nqueens.c:91:29
Spawn nqueens ./nqueens.c:91:29
Call main ./nqueens.c:125:9
2.544000

Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$

25

Cilksan Report

b = (char*) alloca((j+1) * sizeof(char));
memcpy (b, a, j * sizeof(char));
FOr o (At S0 iF < ;e it+0 %
b[j] = i; /* <-- racy write! */
if (ok(j+1,b))
cnt[i] = cilk_spawn nqueens(n,j+1,b);

[7

ASCII art on the left edge
depicts the race context.

* = racing instructions

+ = stack frames (call/spawn)

| / = common calling context
= allocation context

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

$./nqueens 12 ' terminal
Running Cilksan race detector b

Running ./nqueens with n = 12.
Race detected at address 7f7db6cof2e6

i Read nqueens ./nqueens.c:87:3

| "-to variable a (declared at nqueens.c:50)

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

|* Write nqueens ./nqueens.c:89:10

| | -to variable b (declared at ./nqueens.c:53)
|/ Common calling context

+ Call nqueens ./nqueens.c:91:29

+ Spawn nqueens ./nqueens.c:91:29

+ Call main ./nqueens.c:125:9

‘eclar‘ed at ./nqueens.c:53)
Alloc

in nqueens ./nqueens.c:86:16
nqueens ./nqueens.c:91:29
nqueens ./nqueens.c:91:29

Call main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

$

Tips for Effective Performance Engineering

e Maintain the invariant that your code Is correct.
e Regression test heavily and automatically to ensure correctness.
e Don't be a slob: Treat your source code with respect.

Good code hygiene
enables fast code

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 27

WHAT IS PARALLELISM?

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

0.9

PER ORDER OF SPE

28

Execution Model

TG ATl (eG4 TRy i

1 8 AR T4
return n;

1 g s 7T e AR T

cilk scope {
X = cilk spawn fib(n-1);
Y=t 1D G2y

}

return (X + y);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

29

Execution Model

int64 t fib(int64 t n) {
Lrein S |
return n; E>§ample.
int64 t x, y; fib(4)
cilk scope { 4
X = cilk spawn fib(n-1); . strand

return (X + y); i AJ

. U]
oblivious” U u

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

The trace unfolds
dynamically.

Trace DAG

initial strand final strand

continue edge ~N strand

spawn edge return edge

call edge

e A parallel instruction stream (trace)isadag G = (V, E).

e Each vertex v € Vs a strand: a sequence of instructions not
containing a spawn, sync, or return from a spawn.

e An edge e € E s a spawn, call, return, orcontinue edge.

e The compiler converts loop parallelism (cilk for) to spawns
and syncs using recursive divide-and-conquer.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

31

How Much Parallelism?

Assuming that each strand executes in unit time,
what Is the parallelism of this computation?

In other words, what is the maximum possible speedup
of this computation, where speedup Is how much faster
the parallel code runs compared to the serial code?

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

32

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Example Trace Dag

Q. What is the parallelism
(maximum possible speedup) of
this computation, assuming that
each strand executes Iin unit time?
Pick the closest number.

1

D Q00w
O OB WM

33

Amdahl’s “Law”

If 50% of your application is parallel
and 50% is serial, you can’t get more

Gene M. Amdahl

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

\\

than a factor of 2 speedup, no matter

/ how many processors It runs on.*

/

*Paraphrased.

34

Amdahl’s “Law”

e [n general, If a fraction o of an application must be run serially,
the speedup can be at most 1/a.

Speedup = - 11_a

+—-

o IS the a fraction of the application must be run serially
P Is the number of processors

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

35

Quantifying Parallelism

What is the parallelism of this computation?

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Amdahl’s Law says that since the
serial fraction is 3/18 = 1/6, the

speedup Is upper-bounded by 6.

But this bound Is weak.

36

Performance Measures

T, = execution time on P processors

work
18

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

37

Performance Measures

T, = execution time on P processors

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

T, = work Tew = Spanx
=18 =

*Also called critical-path length
or computational depth.

38

Performance Measures

T, = execution time on P processors

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

T, = work Tew = Spanx
=18 =9
| WORK LAW |
To =T/P
- SpaN Law |
To=To |

*Also called critical-path length
or computational depth.

39

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Series Composition

Work: T{(AUB) = T4(A) + T(B)
Span: Tew(AUB) = Tw(A) + To(B)

40

Parallel Composition

Work: T{(AUB) = T,(A) + T,(B)
Span: Te(AUB) = max{T»(A), Tw(B)}

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

41

Speedup

Definition. T,/T, = speedup on P processors.

o IfT,/Tp, =P, we have (perfect) linear speedup.
o [fT/Tp < P,we have sublinear speedup.

e IfT,/T, > P, we have superlinear speedup, which is
not possible in this simple performance model,
because of the WORK LAwW T, = T,/P.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

42

Parallelism

As the SPAN LAW dictates that T, = T4, the
maximum possible speedup given T, and Ty IS

T,/Tw = parallelism

the average amount of work
per step along the span

= 18/9
= 2.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

43

Amdahl’s Law vs. the Span Law

Amdahl’s Law for a program where o of T; must run serially:

. 1
. —_
Speedup = T/Tp = — T 11—«
O(Tl + a+_
P
1
P=>0 = — = 0§
A ignores how much
of parallelism can
_ _ 18 _ actually be attained
P=2 = =1.7 due 1o d denci
T/Te = 18/9 = 2 3+ 15/2 ue to dependencies
18
P=10 = =40 ?
3+ 15/10

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers 44

Example: fib(4)

Assume for simplicity that
each strand in fib(4)
takes unit time to execute

Work: T, =17
Span: T, =38
Parallelism: T,/To = 2.125

|

Using many more than 2 processors can
yield only marginal performance gains.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

45

THE CILKSCALE SCALABILITY
ANALYZER

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

0.9

PER ORDER OF SPE

46

Cilkscale Scalability Analyzer

e The OpenCilk compiler provides a scalability analyzer called Cilkscale

e Like the Cilksan race detector, Cilkscale uses compiler instrumentation to
analyze a serial execution of a program

e Cilkscale computes work and span to derive upper bounds on parallel
performance of all or just part of your program

e Cilkscale Is really three tools in one:
o an analyzer,
o an autobenchmarker,
o a visualizer.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

47

Quicksort

Pivot

9 |-3|] 5|2 |6]|8]-6]1
<=3
3] 2|6 1
<=1 ==1 >=6
-3 | -6 2 8
== b6 ==8
OlE :

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

48

Parallelizing Quicksort

Example: quicksort

{

static void gsort(int * begin, int * end)

if (begin < end) {
int last = *(end - 1);
// linear-time partition
int * middle = partition(begin, end - 1, last);
// move pivot to middle
swap(end - 1, middle);
// recurse
gsort(begin, middle);
gsort(middle + 1, end);

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

49

Parallelizing Quicksort

Example: Parallel quicksort

static void p_gsort(int* begin, int* end)
{
if (begin < end) {
intlkast *=* (ehd = 1%
// linear-time partition
int * middle = partition(begin, end - 1, last);
// move pivot to middle
swap(end - 1, middle);
// recurse
cilk scope {
cilk _spawn p _gsort(begin, middle);
p_gsort(middle + 1, end);
}

4

Analyze the sorting of 10,000,000 numbers. Guess the parallelism!

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

50

Cilkscale: Scalability Visualizer

sample_gsort execution time

1.0 1

0.8

Runtime

0 5 10 15 20 25 30 35 40
Num workers

execution time

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

sample_qsort speedup

40
® Observed
—— Perfect linear speedup
351 — Burdened-dag bound
—— Span bound
30
25
o
=1
o
(]
[0}
[=3
wn

15

20 25
Num workers

speedup

30 35 40

Cilkscale: Scalability Visualizer

sample_gsort execution time 20 sample_qsort speedup
@ Observed
—— Perfect linear speedup
1.0 351 — Burdened-dag bound
—— Span bound
Measured 301 Measured
0.8 1 .
runtime - speedup
o

£ 061 =
2 g 20
= @

0.4 151

10 L LI L L
e0®00®
0.2 1 000330000@080
5 -
0.0] 0 | T T T T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Num workers Num workers
execution time speedup

Cilksan autobenchmarks the code, running it on 1, 2, 3, -* processors,
and the visualizer displays the results.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

52

Cilkscale: Speedup Analysis

Cilkscale’s analyzer determines the work
and span.

The visualizer plots the WORK and SPAN
LAWS.

The visualizer also plots burdened
parallelism, which indicates whether the
program may incur scheduling overhead

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

40

35 A

sample_gsort speedup

® Observed
—— Perfect linear speedup
—— Burdened-dag bound
——— Span bound

SPAN LAW
WORK LAW T/Tp = T/To

T,/Tp < P

burdened
parallelism

5 10 15 20 25 30 35 40
Num workers

speedup

53

Theoretical Analy

Parallel quicksort

SIS

static void p_gsort(int* begin, int* end) {
if (begin < end) {

int last = *(end - 1);

// linear-time partition

int * middle = partition(begin, end -

// move pivot to middle

swap(end - 1, middle);

// recurse

cilk scope {
cilk _spawn p_gsort(begin, middle);
p_qsort(middle + 1, end);

}

d,digst)

>

Expected work = @(n Ig n)
Expected span = ©(n) »

puny

Parallelism = O(lgn) =

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

.

o4

Interesting Practical* Algorithms

Algorithm Parallelism

Merge sort O(nlgn) O(gn) O(n/Ig?n)
Matrix multiplication O(n3) O(lgn) O(n3/Ign)
Strassen ©(n'9") O(lg®n) O(n'9’/Ig°n)
LU-decomposition O(n3) O(nlgn) O©(n%/Ign)
Tableau construction O(n?) ©(n'93) ©(n?-'93)
FFT O(nlgn) O(g°n) O(n/Ign)
Breadth-first search O(E) OAlgV) OE/AlgV)

*Cllk on 1 processor competitive with the best C.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

95

Take-Aways

e Determinacy races are usually bugs.

e Determinacy races can be detected and localized using Cilksan
oand a good regression-testing methodology

e The WORK & SPAN LAWS provide lower bounds on the parallelism
o maximum possible speedup

e Cilkscale can analyze the work, span, and parallelism of a computation

e Many highly parallel and work-efficient algorithms can be programmed in Cilk

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

56

	Slide 1: Lecture 8 Races and Parallelism
	Slide 2: Nested Parallelism in Cilk
	Slide 3: Loop Parallelism in Cilk
	Slide 5: Determinacy Races
	Slide 6: Race Conditions
	Slide 7: Race Condition
	Slide 8: Race Condition
	Slide 10: Determinacy Races
	Slide 11: A Closer Look
	Slide 12: Race Bugs
	Slide 13: Race Bugs
	Slide 14: Race Bugs
	Slide 15: Race Bugs
	Slide 16: Types of Races
	Slide 17: Avoiding Races
	Slide 18: Cilksan Race Detector
	Slide 19: Race Example: Queens
	Slide 20: OpenCilk Cilksan Execution
	Slide 21: Cilksan Report
	Slide 22: Cilksan Report
	Slide 23: Cilksan Report
	Slide 24: Cilksan Report
	Slide 25: Cilksan Report
	Slide 26: Cilksan Report
	Slide 27: Tips for Effective Performance Engineering
	Slide 28: What Is Parallelism?
	Slide 29: Execution Model
	Slide 30: Execution Model
	Slide 31: Trace DAG
	Slide 32: How Much Parallelism?
	Slide 33: Example Trace Dag
	Slide 34: Amdahl’s “Law”
	Slide 35: Amdahl’s “Law”
	Slide 36: Quantifying Parallelism
	Slide 37: Performance Measures
	Slide 38: Performance Measures
	Slide 39: Performance Measures
	Slide 40: Series Composition
	Slide 41: Parallel Composition
	Slide 42: Speedup
	Slide 43: Parallelism
	Slide 44: Amdahl’s Law vs. the Span Law
	Slide 45: Example: fib(4)
	Slide 46: The Cilkscale Scalability Analyzer
	Slide 47: Cilkscale Scalability Analyzer
	Slide 48: Quicksort
	Slide 49: Parallelizing Quicksort
	Slide 50: Parallelizing Quicksort
	Slide 51: Cilkscale: Scalability Visualizer
	Slide 52: Cilkscale: Scalability Visualizer
	Slide 53: Cilkscale: Speedup Analysis
	Slide 54: Theoretical Analysis
	Slide 55: Interesting Practical* Algorithms
	Slide 56: Take-Aways

