
Software Performance Engineering

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

LECTURE 3
Bentley Rules
for optimizing Work

Xuhao Chen
Wednesday, September 3, 2025

1

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

A Situation

Situation
You and your partner discover a clever algorithm, compiler switch, etc. that
speeds up your code.

Q. Which of the following would you do?

a. Keep it secret so that you can beat the other teams.

b. Publish the idea on Piazza.

Course Policy
1. You are not competing with other teams. The cutoffs for grades are

determined independently of how teams perform.
2. You receive class-contribution points for sharing ideas and code snippets

on Piazza
3. You may not copy code, but you can take inspiration from each other.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Work

3

Definition.
The work of a program (on a given input) is the sum
total of all the operations executed by the program.

The number of
executed instructions

Avoid unnecessary
work

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Reducing Work

4

⚫ Less work ≈ faster code

⚫ Reducing the work of a program does not automatically reduce its
running time, due to the complex nature of computer hardware:
 instruction-level parallelism (ILP),

 caching,

 vectorization,

 speculation and branch prediction, etc

⚫ But reducing work is a good heuristic for reducing overall exec. time

⚫ Algorithm design can produce dramatic reductions in the work
 e.g. when a Θ(n lg n)-time sort replaces a Θ(n2)-time sort

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

BENTLEY RULES FOR
OPTIMIZING WORK

5

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Jon Louis Bentley

6
1982

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

New Bentley Rules

7

Data structures
● Packing and encoding
● Augmentation
● Caching
● Precomputation
● Compile-time initialization

● Sparsity

 Loops
● Loop unrolling
● Hoisting
● Loop fusion

● Eliminating wasted iterations

Logic
● Constant folding and propagation
● Common-subexpression elimination
● Algebraic identities
● Creating a fast path
● Short-circuiting

● Ordering tests
● Combining tests

Functions
● Inlining
● Tail-recursion elimination

● Coarsening recursion

Loops Functions

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

DATA STRUCTURES

8

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Packing and Encoding

9

Packing is to store more than one data value in a machine word.
Encoding is to convert data into a representation that requires fewer bits

Example: Encoding dates
● The string “September 3, 2020” can be stored in 17 bytes —

more than two 64-bit words — which must move whenever the
date is manipulated.

● Assuming that we only store dates between 4096 B.C.E. and 4096
C.E., there are about 365.25 × 8192 ≈ 3 M dates, which can be
encoded in ⎡lg(3×106)⎤ = 22 bits, easily fitting in a 32-bit word.

● Problem: How can we represent dates compactly so that
determining the year, month, and day is fast?

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Packing and Encoding (2)

10

Example: Packing dates
● Let us pack the three fields into a word:

typedef struct {
 int year: 13;
 int month: 4;
 int day: 5;
} date_t;

● Still only takes 22 bits

●But individual fields can be extracted much more quickly

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Augmentation

11

The idea is to add information to a data structure
to make common operations do less work.

Example: Appending one singly linked list to another

head

head tail

●Walk through the first list, and
set its null pointer to the start
of the second

●Augmenting the list with a tail
pointer allows appending to
operate in constant time.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Caching

12

The idea is to store results that have been accessed recently
so that the program need not compute them again.

double hypotenuse(double A, double B) {
 return sqrt(A*A + B*B);
}

double cached_A = 0.0;
double cached_B = 0.0;
double cached_h = 0.0;

double hypotenuse(double A, double B) {
 if (A == cached_A && B == cached_B) {
 return cached_h;
 }
 cached_A = A;
 cached_B = B;
 cached_h = sqrt(A*A + B*B);
 return cached_h;
}

About 30% faster
if cache is hit 2/3
of the time.

Before

After

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Precomputation

13

The idea is to perform calculations in advance so
as to avoid doing them at “mission-critical” times.

Example: Binomial coefficients

• Expensive (lots of multiplications)
• Integer overflow for even

modest values of n and k

Idea: Precompute the table of coefficients when initializing,
and perform table look-up at runtime.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Step 1: Pascal’s Triangle

14

int choose(int n, int k) {
 if (n < k) return 0;
 if (k == 0) return 1;
 return choose(n-1, k-1) + choose(n-1, k);
}

1 0 0 0 0 0 0 0 0

 1 1 0 0 0 0 0 0 0

 1 2 1 0 0 0 0 0 0

 1 3 3 1 0 0 0 0 0

 1 4 6 4 1 0 0 0 0

 1 5 10 10 5 1 0 0 0

 1 6 15 20 15 6 1 0 0

 1 7 21 35 35 21 7 1 0

 1 8 28 56 70 56 28 8 1n

k

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Step 2: Precomputing Pascal

15

#define CHOOSE_SIZE 100
int choose[CHOOSE_SIZE][CHOOSE_SIZE];

void init_choose() {
 for (int n = 0; n < CHOOSE_SIZE; ++n) {
 choose[n][0] = 1;
 choose[n][n] = 1;
 }
 for (int n = 1; n < CHOOSE_SIZE; ++n) {
 choose[0][n] = 0;
 for (int k = 1; k < n; ++k) {
 choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
 choose[k][n] = 0;
 }
 }
}

Now, whenever we need a binomial coefficient (less than
100), we can simply index the choose array.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Compile-Time Initialization

16

The idea is to store the values of constants during
compilation, saving work at execution time.

int choose[10][10] = {
 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, },
 { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, },
 { 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, },
 { 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, },
 { 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, },
 { 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, },
 { 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, },
 { 1, 7, 21, 35, 35, 21, 7, 1, 0, 0, },
 { 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, },
 { 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, },
};

Example

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Compile-Time Initialization (2)

17

#define N 100
int main(int argc, const char *argv[]) {
 init_choose();
 printf("#define N %3d\n”, N);
 printf("int choose[N][N] = {\n");
 for (int a = 0; a < N; ++a) {
 printf(" {");
 for (int b = 0; b < N; ++b) {
 printf("%3d, ", choose[a][b]);
 }
 printf("},\n");
 }
 printf("};\n");
}

Idea: Create large static tables by metaprogramming.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Sparsity

19

The idea is to avoid storing and computing on zeroes.
“The fastest way to compute is not to compute at all.”

Example: Matrix-vector multiplication

y =

3 0 0 0 1 0

0 4 1 0 5 9

0 0 0 2 0 6

5 0 0 3 0 0

5 0 0 0 8 0

0 0 0 9 7 0

æ

è

ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷÷

1

4

2

8

5

7

æ

è

ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷÷

Dense matrix-vector multiplication performs n2 = 36
scalar multiplies, but only 14 entries are nonzero.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Sparsity

20

y =

3 1

4 1 5 9

2 6

5 3

5 8

9 7

æ

è

ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷÷

1

4

2

8

5

7

æ

è

ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷÷

The idea is to avoid storing and computing on zeroes.
“The fastest way to compute is not to compute at all.”

Example: Matrix-vector multiplication

Dense matrix-vector multiplication performs n2 = 36
scalar multiplies, but only 14 entries are nonzero.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

1

Sparsity (2)

21

Compressed Sparse Rows (CSR)

3 0 0 0 1 0
0 4 1 0 5 9
0 0 0 2 0 6
5 0 0 3 0 0
0 0 0 0 5 0
0 0 0 8 9 7

æ

è

ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷÷

0 1 2 3 4 5 6 7 8 9 10 11 12 13
rows: [0 2 6 8 10 11 14]

cols:[0 4 1 2 4 5 3 5 0 3 0 4 3 4]
vals:[3 1 4 1 5 9 2 6 5 3 5 8 9 7]

0 1 2 3 4 5

0

2

3

4

5

n = 6
nnz = 14

Storage is O(n+nnz) instead of n2

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Sparsity (3)

22

typedef struct {
 int n, nnz;
 int *rows; // length n
 int *cols; // length nnz
 double *vals; // length nnz
} sparse_matrix_t;

void spmv(sparse_matrix_t *A, double *x, double *y) {
 for (int i = 0; i < A->n; i++) {
 y[i] = 0;
 for (int k = A->rows[i]; k < A->rows[i+1]; k++) {
 int j = A->cols[k];
 y[i] += A->vals[k] * x[j];
 }
 }
}

CSR matrix-vector multiplication

Number of scalar multiplications = nnz, which is
potentially much less than n2.
See the TACO research project if you are interested (https://tensor-compiler.org/)

https://tensor-compiler.org/
https://tensor-compiler.org/
https://tensor-compiler.org/

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Sparsity (3)

23

typedef struct {
 int n, nnz;
 int *rows; // length n
 int *cols; // length nnz
 double *vals; // length nnz
} sparse_matrix_t;

void spmv(sparse_matrix_t *A, double *x, double *y) {
 for (int i = 0; i < A->n; i++) {
 y[i] = 0;
 for (int k = A->rows[i]; k < A->rows[i+1]; k++) {
 int j = A->cols[k];
 y[i] += A->vals[k] * x[j];
 }
 }
}

CSR matrix-vector multiplication

Number of scalar multiplications = nnz, which is
potentially much less than n2.
See the TACO research project if you are interested (https://tensor-compiler.org/)

0

3

6

9

12

15

10
0 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5

ti
m

e
(m

s)

Density (%)

SpMV MV 8k x 8k double precision matrix

https://tensor-compiler.org/
https://tensor-compiler.org/
https://tensor-compiler.org/

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Sparsity (4)

24

Storing a sparse graph 0

1

2

3

4

0 2 5 5 6 7

1 3 2 3 4 2 2

offsets

edges

Vertex ID 0 1 2 3 4

⚫ Many graph algorithms run efficiently on this
representation, e.g., breadth-first search, PageRank.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

LOGIC

25

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Constant Folding and Propagation

26

The idea of is to evaluate constant expressions, and substitute
the result into further expressions, all during compilation.

#include <math.h>

void orrery() {
 const double radius = 6371000.0;
 const double diameter = 2 * radius;
 const double circumference = M_PI * diameter;
 const double cross_area = M_PI * radius * radius;
 const double surface_area =
 circumference * diameter;
 const double volume =
 4 * M_PI * radius * radius * radius / 3;
 // ...
}

With a sufficiently high optimization level, all the expressions
are evaluated at compile-time.

1https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg

mechanical orrery 1

https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg
https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg
https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Common-Subexpression Elimination

27

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

The idea is to avoid computing the same expression multiple times
by evaluating the expression once and saving the result for later use

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Common-Subexpression Elimination

28

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

The third line cannot be replaced by c = a,
because the value of b changes in the second line

The idea is to avoid computing the same expression multiple times by
evaluating the expression once and saving the result for later use

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Algebraic Identities

29

The idea is to replace expensive algebraic expressions
with algebraic equivalents that require less work

#include <stdbool.h>
#include <math.h>

typedef struct {
 double x, y, z; // spatial coordinates
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
 double d = sqrt(square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z));
 return d <= b1->r + b2->r;
}

Expensive
routine!

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Algebraic Identities

30

#include <stdbool.h>
#include <math.h>

typedef struct {
 double x, y, z; // spatial coordinates
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
 double d = sqrt(square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z));
 return d <= b1->r + b2->r;
}

bool collides(ball_t *b1, ball_t *b2) {
 double dsquared = square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z);
 return dsquared <= square(b1->r + b2->r);
}

exactly when

Caution: Be careful
with floating point!

The idea is to replace expensive algebraic expressions
with algebraic equivalents that require less work

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

#include <stdbool.h>
#include <math.h>

typedef struct {
 double x, y, z; // spatial coordinates
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
 double dsquared = square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z);
 return dsquared <= square(b1->r + b2->r);
}

Creating a Fast Path

31

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Creating a Fast Path

32

double dsquared = square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z);
 return dsquared <= square(b1->r + b2->r);
}

#include <stdbool.h>
#include <math.h>

typedef struct {
 double x, y, z; // spatial coordinates
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Creating a Fast Path

33

double dsquared = square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z);
 return dsquared <= square(b1->r + b2->r);
}

#include <stdbool.h>
#include <math.h>

typedef struct {
 double x, y, z; // spatial coordinates
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {

if ((abs(b1->x – b2->x) > (b1->r + b2->r)) ||
 (abs(b1->y – b2->y) > (b1->r + b2->r)) ||
 (abs(b1->z – b2->z) > (b1->r + b2->r)))
 return false;

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Short-Circuiting

34

The idea is to stop evaluating as soon as you know
the answer, when performing a series of tests

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 sum += A[i];
 }
 return sum > limit;
}

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Short-Circuiting

35

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 sum += A[i];
 }
 return sum > limit;
}

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 sum += A[i];
 if (sum > limit) {
 return true;
 }
 }
 return false;
}

Before

After

The idea is to stop evaluating as soon as you know
the answer, when performing a series of tests

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Ordering Tests

36

Consider code that executes a sequence of logical tests.
The idea is to perform those that are more often “successful”
before tests that are rarely successful.

#include <stdbool.h>
bool is_whitespace(char c) {
 return (c == '\r' || c == '\t' || c == ' ' || c == '\n');
}

#include <stdbool.h>
bool is_whitespace(char c) {
 return (c == ' ' || c == '\n' || c == '\t' || c == '\r');
}

Note that && and || are short-circuiting logical operators,
whereas & and | are not.

Before

After

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Combining Tests

37

The idea is to replace a sequence of tests with one test or switch

void full_add(int a,
 int b,
 int c,
 int *sum,
 int *carry) {
 if (a == 0) {
 if (b == 0) {
 if (c == 0) {
 *sum = 0;
 *carry = 0;
 } else {
 *sum = 1;
 *carry = 0;
 }
 } else {
 if (c == 0) {
 *sum = 1;
 *carry = 0;
 } else {
 *sum = 0;
 *carry = 1;
 }
 }

 } else {
 if (b == 0) {
 if (c == 0) {
 *sum = 1;
 *carry = 0;
 } else {
 *sum = 0;
 *carry = 1;
 }
 } else {
 if (c == 0) {
 *sum = 0;
 *carry = 1;
 } else {
 *sum = 1;
 *carry = 1;
 }
 }
 }
}

a b c carry sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full adder

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Combining Tests (2)

38

void full_add(int a,
 int b,
 int c,
 int *sum,
 int *carry) {
 int test = ((a == 1) << 2)
 | ((b == 1) << 1)
 | (c == 1);
 switch(test) {
 case 0:
 *sum = 0;
 *carry = 0;
 break;
 case 1:
 *sum = 1;
 *carry = 0;
 break;
 case 2:
 *sum = 1;
 *carry = 0;
 break;

 case 3:
 *sum = 0;
 *carry = 1;
 break;
 case 4:
 *sum = 1;
 *carry = 0;
 break;
 case 5:
 *sum = 0;
 *carry = 1;
 break;
 case 6:
 *sum = 0;
 *carry = 1;
 break;
 case 7:
 *sum = 1;
 *carry = 1;
 break;
 }
}

a b c carry sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full adder

In this case, the
outputs can be
computed
mathematically.

The idea is to replace a sequence of tests with one test or switch

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

LOOPS

39

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Why Loops?

40

Loops are often the focus of performance optimization. Why?

Consider this thought experiment:

● Suppose that a 2 GHz processor can execute 1 instruction
per clock cycle.

● Suppose that a program contains 16 GB of instructions, but
it is all simple straight-line code, i.e., no backwards branches.

● Question: How long does the code take to run?

Answer: at most 8 seconds!

Loops account for a lot of work!

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

What Happens When a Loop Runs?

41

int sum = 0;
for (int i = 0; i < N; i++) {
 sum += A[i];
}

int sum = 0;
int i = 0;
if (i >= N)
 goto loop_exit;
sum += A[i];
i++;
if (i >= N)
 goto loop_exit;
sum += A[i];
i++;
if (i >= N)
 goto loop_exit;
sum += A[i];
i++;
if (i >= N)
 goto loop_exit;
sum += A[i];
i++;
if (i >= N)
 goto loop_exit;
// ...

A simple loop

Pseudocode for
loop execution

Loop
control

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Loop Unrolling

42

The idea is to save work by combining consecutive
iterations of a loop into a single iteration

● Full loop unrolling: All iterations are unrolled.

●Partial loop unrolling: Several, but not all, of the iterations are unrolled.

Loop unrolling reduces the total number of iterations of the loop and, consequently,
the number of times that the instructions that control the loop must be executed.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Full Loop Unrolling

43

int sum = 0;
for (int i = 0; i < 10; i++) {
 sum += A[i];
}

int sum = 0;
sum += A[0];
sum += A[1];
sum += A[2];
sum += A[3];
sum += A[4];
sum += A[5];
sum += A[6];
sum += A[7];
sum += A[8];
sum += A[9];

Before After

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Partial Loop Unrolling

44

int sum = 0;
for (int i = 0; i < n; ++i) {
 sum += A[i];
}

int sum = 0;
int j;
for (j = 0; j < n-3; j += 4) {
 sum += A[j];
 sum += A[j+1];
 sum += A[j+2];
 sum += A[j+3];
}
for (int i = j; i < n; ++i) {
 sum += A[i];
}

Benefits of loop unrolling
• Fewer instructions devoted to loop control.
• Enables more compiler optimizations.
Caution: Unrolling too much can cause poor use of the
instruction cache, because the code is bigger.

Before After

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Hoisting

45

The idea is to avoid recomputing loop-invariant code each
time through the body of a loop.

#include <math.h>

void scale(double *X, double *Y, int N) {
 for (int i = 0; i < N; i++) {
 Y[i] = X[i] * exp(sqrt(M_PI/2));
 }
} #include <math.h>

void scale(double *X, double *Y, int N) {
 double factor = exp(sqrt(M_PI/2));
 for (int i = 0; i < N; i++) {
 Y[i] = X[i] * factor;
 }
}

Before

After

a.k.a. loop-invariant code motion

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Hoisting

46

#include <math.h>

void scale(double *X, double *Y, int N) {
 for (int i = 0; i < N; i++) {
 Y[i] = X[i] * exp(sqrt(M_PI/N));
 }
}

Before

The idea is to avoid recomputing loop-invariant code each
time through the body of a loop.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Loop Fusion

49

The idea is to combine multiple loops over the same index
range into a single loop body, thereby saving the overhead of
loop control. a.k.a. Jamming

for (int i = 0; i < n; ++i) {
 C[i] = (A[i] <= B[i]) ? A[i] : B[i];
}

for (int i = 0; i < n; ++i) {
 D[i] = (A[i] <= B[i]) ? B[i] : A[i];
}

for (int i = 0; i < n; ++i) {
 C[i] = (A[i] <= B[i]) ? A[i] : B[i];
 D[i] = (A[i] <= B[i]) ? B[i] : A[i];
}

Before

After

Ternary operator
for if-else.

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Eliminating Wasted Iterations

50

The idea is to modify loop bounds to avoid executing
loop iterations over essentially empty loop bodies.

for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 if (i > j) {
 int temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
 }
}

for (int i = 1; i < n; ++i) {
 for (int j = 0; j < i; ++j) {
 int temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

Before

After

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

FUNCTIONS

51

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Inlining

52

The idea is to avoid the overhead of a function call by replacing
a call to the function with the body of the function itself

double square(double x) {
 return x*x;
}

double sum_of_squares(double *A, int n) {
 double sum = 0.0;
 for (int i = 0; i < n; ++i) {
 sum += square(A[i]);
 }
 return sum;
}

double sum_of_squares(double *A, int n) {
 double sum = 0.0;
 for (int i = 0; i < n; ++i) {
 double temp = A[i];
 sum += temp*temp;
 }
 return sum;
}

Before

After

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Inlining (2)

53

inline double square(double x) {
 return x*x;
}

double sum_of_squares(double *A, int n) {
 double sum = 0.0;
 for (int i = 0; i < n; ++i)
 sum += square(A[i]);
 return sum;
}

Inlined functions can be just as efficient as macros, and they
are safer to use and better structured.

Ask the compiler
to inline for you.

The idea is to avoid the overhead of a function call by replacing
a call to the function with the body of the function itself

__attribute__((always_inline))

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Tail-Recursion Elimination

54

It is to remove the overhead of a recursive call that occurs as the
last step of a function. The call is replaced with a branch to the
top of the function, and the storage for the local variables of the
function is reused by the erstwhile recursive call.

void quicksort(int *A, int n) {
 if (n > 1) {
 int r = partition(A, n);
 quicksort (A, r);
 quicksort (A + r + 1, n - r - 1);
 }
} void quicksort(int *A, int n) {

 while (n > 1) {
 int r = partition(A, n);
 quicksort (A, r);
 A += r + 1;
 n -= r + 1;
 }
}

Before

After

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Coarsening Recursion

55

The idea is to increase the size of the base case and handle it
with more efficient code that avoids function-call overhead.

void quicksort(int *A, int n) {
 while (n > 1) {
 int r = partition(A, n);
 quicksort (A, r);
 A += r + 1;
 n -= r + 1;
 }
}

#define THRESHOLD 64
void quicksort(int *A, int n) {
 while (n > THRESHOLD) {
 int r = partition(A, n);
 quicksort (A, r);
 A += r + 1;
 n -= r + 1;
 }
 // insertion sort for small arrays
 for (int j = 1; j < n; ++j) {
 int key = A[j];
 int i = j - 1;
 while (i >= 0 && A[i] > key) {
 A[i+1] = A[i];
 --i;
 }
 A[i+1] = key;
 }
}

Before After

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

SUMMARY

56

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

New Bentley Rules

57

Data structures
● Packing and encoding
● Augmentation
● Caching
● Precomputation
● Compile-time initialization

● Sparsity

Loops
● Loop unrolling
● Hoisting
● Loop fusion

● Eliminating wasted iterations

Logic
● Constant folding and propagation
● Common-subexpression elimination
● Algebraic identities
● Creating a fast path
● Short-circuiting

● Ordering tests
● Combining tests

Functions

● Inlining
● Tail-recursion elimination

● Coarsening recursion

© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Closing Advice

58

● Avoid premature optimization. First, get correct working code.
Then optimize, preserving correctness by regression testing.

● Reducing the work of a program does not necessarily decrease its
running time, but it is a good heuristic.

● Many optimizations involve tradeoffs. Use a profiler to see what
code needs to be optimized. (See Homework 2.)

● The compiler automates many low-level optimizations, but not all.

If you find interesting examples of work
optimization, please let us know!

	Slide 1: Lecture 3 Bentley Rules for optimizing Work
	Slide 2: A Situation
	Slide 3: Work
	Slide 4: Reducing Work
	Slide 5: Bentley Rules for Optimizing Work
	Slide 6: Jon Louis Bentley
	Slide 7: New Bentley Rules
	Slide 8: Data Structures
	Slide 9: Packing and Encoding
	Slide 10: Packing and Encoding (2)
	Slide 11: Augmentation
	Slide 12: Caching
	Slide 13: Precomputation
	Slide 14: Step 1: Pascal’s Triangle
	Slide 15: Step 2: Precomputing Pascal
	Slide 16: Compile-Time Initialization
	Slide 17: Compile-Time Initialization (2)
	Slide 19: Sparsity
	Slide 20: Sparsity
	Slide 21: Sparsity (2)
	Slide 22: Sparsity (3)
	Slide 23: Sparsity (3)
	Slide 24: Sparsity (4)
	Slide 25: Logic
	Slide 26: Constant Folding and Propagation
	Slide 27: Common-Subexpression Elimination
	Slide 28: Common-Subexpression Elimination
	Slide 29: Algebraic Identities
	Slide 30: Algebraic Identities
	Slide 31: Creating a Fast Path
	Slide 32: Creating a Fast Path
	Slide 33: Creating a Fast Path
	Slide 34: Short-Circuiting
	Slide 35: Short-Circuiting
	Slide 36: Ordering Tests
	Slide 37: Combining Tests
	Slide 38: Combining Tests (2)
	Slide 39: Loops
	Slide 40: Why Loops?
	Slide 41: What Happens When a Loop Runs?
	Slide 42: Loop Unrolling
	Slide 43: Full Loop Unrolling
	Slide 44: Partial Loop Unrolling
	Slide 45: Hoisting
	Slide 46: Hoisting
	Slide 49: Loop Fusion
	Slide 50: Eliminating Wasted Iterations
	Slide 51: Functions
	Slide 52: Inlining
	Slide 53: Inlining (2)
	Slide 54: Tail-Recursion Elimination
	Slide 55: Coarsening Recursion
	Slide 56: Summary
	Slide 57: New Bentley Rules
	Slide 58: Closing Advice

