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A Situation

Situation
You and your partner discover a clever algorithm, compiler switch, etc. that 
speeds up your code.  

Q. Which of the following would you do?

a. Keep it secret so that you can beat the other teams.

b. Publish the idea on Piazza.

Course Policy
1. You are not competing with other teams.  The cutoffs for grades are 

determined independently of how teams perform. 
2. You receive class-contribution points for sharing ideas and code snippets 

on Piazza
3. You may not copy code, but you can take inspiration from each other.
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Work
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Definition.
The work of a program (on a given input) is the sum 
total of all the operations executed by the program.

The number of 
executed instructions

Avoid unnecessary 
work
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Reducing Work

4

⚫ Less work ≈ faster code 

⚫ Reducing the work of a program does not automatically reduce its 
running time, due to the complex nature of computer hardware:
 instruction-level parallelism (ILP),

 caching,

 vectorization,

 speculation and branch prediction, etc

⚫ But reducing work is a good heuristic for reducing overall exec. time

⚫ Algorithm design can produce dramatic reductions in the work
 e.g. when a Θ(n lg n)-time sort replaces a Θ(n2)-time sort
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Jon Louis Bentley

6
1982
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New Bentley Rules
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Data structures 
● Packing and encoding
● Augmentation
● Caching 
● Precomputation
● Compile-time initialization

● Sparsity

 Loops
● Loop unrolling
● Hoisting
● Loop fusion

● Eliminating wasted iterations

Logic
● Constant folding and propagation
● Common-subexpression elimination
● Algebraic identities
● Creating a fast path
● Short-circuiting

● Ordering tests
● Combining tests

Functions 
● Inlining
● Tail-recursion elimination

● Coarsening recursion

Loops Functions



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT

∞
PER ORDER OF SPE

DATA STRUCTURES

8



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Packing and Encoding
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Packing is to store more than one data value in a machine word.  
Encoding is to convert data into a representation that requires fewer bits

Example: Encoding dates
● The string “September 3, 2020” can be stored in 17 bytes — 

more than two 64-bit words — which must move whenever the 
date is manipulated.

● Assuming that we only store dates between 4096 B.C.E. and 4096 
C.E., there are about 365.25 × 8192 ≈ 3 M dates, which can be 
encoded in ⎡lg(3×106)⎤ = 22 bits, easily fitting in a 32-bit word.

● Problem: How can we represent dates compactly so that 
determining the year, month, and day is fast?
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Packing and Encoding (2)
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Example: Packing dates
● Let us pack the three fields into a word:

typedef struct {
  int year: 13;
  int month: 4;
  int day: 5;
} date_t;

● Still only takes 22 bits

●But individual fields can be extracted much more quickly
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Augmentation

11

The idea is to add information to a data structure 
to make common operations do less work.

Example: Appending one singly linked list to another

head

head tail

●Walk through the first list, and 
set its null pointer to the start 
of the second

●Augmenting the list with a tail 
pointer allows appending to 
operate in constant time.
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Caching
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The idea is to store results that have been accessed recently 
so that the program need not compute them again.

double hypotenuse(double A, double B) {
  return sqrt(A*A + B*B);
}

double cached_A = 0.0;
double cached_B = 0.0;
double cached_h = 0.0;

double hypotenuse(double A, double B) {
  if (A == cached_A && B == cached_B) {
    return cached_h;
  }
  cached_A = A;
  cached_B = B;
  cached_h = sqrt(A*A + B*B);
  return cached_h;
}

About 30% faster 
if cache is hit 2/3 
of the time.

Before

After
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Precomputation
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The idea is to perform calculations in advance so 
as to avoid doing them at “mission-critical” times.

Example: Binomial coefficients

• Expensive (lots of multiplications)
• Integer overflow for even 

modest values of n and k

Idea: Precompute the table of coefficients when initializing, 
and perform table look-up at runtime.
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Step 1: Pascal’s Triangle
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int choose(int n, int k) {
  if (n < k)  return 0; 
  if (k == 0) return 1; 
  return choose(n-1, k-1) + choose(n-1, k); 
}

1   0   0   0   0   0   0   0   0

    1   1   0   0   0   0   0   0   0

    1   2   1   0   0   0   0   0   0

    1   3   3   1   0   0   0   0   0

    1   4   6   4   1   0   0   0   0

    1   5  10  10   5   1   0   0   0 

    1   6  15  20  15   6   1   0   0

    1   7  21  35  35  21   7   1   0

    1   8  28  56  70  56  28   8   1n

k
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Step 2: Precomputing Pascal
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#define CHOOSE_SIZE 100
int choose[CHOOSE_SIZE][CHOOSE_SIZE];

void init_choose() {
  for (int n = 0; n < CHOOSE_SIZE; ++n) {
    choose[n][0] = 1;
    choose[n][n] = 1;
  }
  for (int n = 1; n < CHOOSE_SIZE; ++n) {
    choose[0][n] = 0;
    for (int k = 1; k < n; ++k) {
      choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
      choose[k][n] = 0;
    }
  }
}

Now, whenever we need a binomial coefficient (less than 
100), we can simply index the choose array.
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Compile-Time Initialization
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The idea is to store the values of constants during 
compilation, saving work at execution time.

int choose[10][10] = {
  {  1,   0,   0,   0,   0,   0,   0,   0,   0,   0, },
  {  1,   1,   0,   0,   0,   0,   0,   0,   0,   0, },
  {  1,   2,   1,   0,   0,   0,   0,   0,   0,   0, },
  {  1,   3,   3,   1,   0,   0,   0,   0,   0,   0, },
  {  1,   4,   6,   4,   1,   0,   0,   0,   0,   0, },
  {  1,   5,  10,  10,   5,   1,   0,   0,   0,   0, },
  {  1,   6,  15,  20,  15,   6,   1,   0,   0,   0, },
  {  1,   7,  21,  35,  35,  21,   7,   1,   0,   0, },
  {  1,   8,  28,  56,  70,  56,  28,   8,   1,   0, },
  {  1,   9,  36,  84, 126, 126,  84,  36,   9,   1, },
};

Example
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Compile-Time Initialization (2)
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#define N 100
int main(int argc, const char *argv[]) {
  init_choose();
  printf("#define N %3d\n”, N);
  printf("int choose[N][N] = {\n");
  for (int a = 0; a < N; ++a) {
    printf("  {");
    for (int b = 0; b < N; ++b) {
      printf("%3d, ", choose[a][b]);
    }
    printf("},\n");
  }
  printf("};\n");
}

Idea: Create large static tables by metaprogramming.
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Sparsity
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The idea is to avoid storing and computing on zeroes. 
“The fastest way to compute is not to compute at all.”

Example: Matrix-vector multiplication

y =

3 0 0 0 1 0
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Dense matrix-vector multiplication performs n2 = 36 
scalar multiplies, but only 14 entries are nonzero.
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Sparsity
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y =
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The idea is to avoid storing and computing on zeroes. 
“The fastest way to compute is not to compute at all.”

Example: Matrix-vector multiplication

Dense matrix-vector multiplication performs n2 = 36 
scalar multiplies, but only 14 entries are nonzero.
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1

Sparsity (2)

21

Compressed Sparse Rows (CSR)

3 0 0 0 1 0
0 4 1 0 5 9
0 0 0 2 0 6
5 0 0 3 0 0
0 0 0 0 5 0
0 0 0 8 9 7

æ
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ç
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ç
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 
rows: [0 2 6 8 10 11 14]

cols:[0 4 1 2 4 5 3 5 0 3 0 4 3 4] 
vals:[3 1 4 1 5 9 2 6 5 3 5 8 9 7] 

0 1 2 3 4 5

0

2

3

4

5

n = 6
nnz = 14

Storage is O(n+nnz) instead of n2
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Sparsity (3)
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typedef struct {
  int n, nnz;
  int *rows;     // length n
  int *cols;     // length nnz
  double *vals;  // length nnz
} sparse_matrix_t;

void spmv(sparse_matrix_t *A, double *x, double *y) {
  for (int i = 0; i < A->n; i++) { 
    y[i] = 0;
    for (int k = A->rows[i]; k < A->rows[i+1]; k++) { 
      int j = A->cols[k];
      y[i] += A->vals[k] * x[j];
    }
  }
}

CSR matrix-vector multiplication

Number of scalar multiplications = nnz, which is 
potentially much less than n2.
See the TACO research project if you are interested (https://tensor-compiler.org/)

https://tensor-compiler.org/
https://tensor-compiler.org/
https://tensor-compiler.org/
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Sparsity (3)

23

typedef struct {
  int n, nnz;
  int *rows;     // length n
  int *cols;     // length nnz
  double *vals;  // length nnz
} sparse_matrix_t;

void spmv(sparse_matrix_t *A, double *x, double *y) {
  for (int i = 0; i < A->n; i++) { 
    y[i] = 0;
    for (int k = A->rows[i]; k < A->rows[i+1]; k++) { 
      int j = A->cols[k];
      y[i] += A->vals[k] * x[j];
    }
  }
}

CSR matrix-vector multiplication

Number of scalar multiplications = nnz, which is 
potentially much less than n2.
See the TACO research project if you are interested (https://tensor-compiler.org/)
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Sparsity (4)
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Storing a sparse graph 0

1

2

3

4

0 2 5 5 6 7

1 3 2 3 4 2 2

offsets

edges

Vertex ID   0     1     2     3     4

⚫ Many graph algorithms run efficiently on this 
representation, e.g., breadth-first search, PageRank.
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Constant Folding and Propagation
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The idea of is to evaluate constant expressions, and substitute 
the result into further expressions, all during compilation.

#include <math.h>

void orrery() {
  const double radius = 6371000.0;
  const double diameter = 2 * radius;
  const double circumference = M_PI * diameter;
  const double cross_area = M_PI * radius * radius;
  const double surface_area =
      circumference * diameter;
  const double volume =
      4 * M_PI * radius * radius * radius / 3;
  // ...
}

With a sufficiently high optimization level, all the expressions 
are evaluated at compile-time.

1https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg

mechanical orrery 1

https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg
https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg
https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg


© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Common-Subexpression Elimination

27

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

The idea is to avoid computing the same expression multiple times 
by evaluating the expression once and saving the result for later use
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Common-Subexpression Elimination
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a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

The third line cannot be replaced by c = a, 
because the value of b changes in the second line 

The idea is to avoid computing the same expression multiple times by 
evaluating the expression once and saving the result for later use
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Algebraic Identities

29

The idea is to replace expensive algebraic expressions 
with algebraic equivalents that require less work

#include <stdbool.h>
#include <math.h>

typedef struct {
  double x, y, z; // spatial coordinates
  double r;        // radius of ball
} ball_t;

double square(double x) {
  return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
  double d = sqrt(square(b1->x - b2->x)
                  + square(b1->y - b2->y) 
                  + square(b1->z - b2->z));
  return d <= b1->r + b2->r;  
}

Expensive 
routine!
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Algebraic Identities
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#include <stdbool.h>
#include <math.h>

typedef struct {
  double x, y, z; // spatial coordinates
  double r;        // radius of ball
} ball_t;

double square(double x) {
  return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
  double d = sqrt(square(b1->x - b2->x)
                  + square(b1->y - b2->y) 
                  + square(b1->z - b2->z));
  return d <= b1->r + b2->r;  
}

bool collides(ball_t *b1, ball_t *b2) {
  double dsquared = square(b1->x - b2->x) 
                    + square(b1->y - b2->y) 
                    + square(b1->z - b2->z);
  return dsquared <= square(b1->r + b2->r);
}

exactly when

Caution: Be careful 
with floating point!

The idea is to replace expensive algebraic expressions 
with algebraic equivalents that require less work
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#include <stdbool.h>
#include <math.h>

typedef struct {
  double x, y, z;  // spatial coordinates
  double r;        // radius of ball
} ball_t;

double square(double x) {
  return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
  double dsquared = square(b1->x - b2->x) 
                    + square(b1->y - b2->y) 
                    + square(b1->z - b2->z);
  return dsquared <= square(b1->r + b2->r);
}

Creating a Fast Path

31
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Creating a Fast Path

32

double dsquared = square(b1->x - b2->x) 
                    + square(b1->y - b2->y) 
                    + square(b1->z - b2->z);
  return dsquared <= square(b1->r + b2->r);
}

#include <stdbool.h>
#include <math.h>

typedef struct {
  double x, y, z;  // spatial coordinates
  double r;        // radius of ball
} ball_t;

double square(double x) {
  return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
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Creating a Fast Path

33

double dsquared = square(b1->x - b2->x) 
                    + square(b1->y - b2->y) 
                    + square(b1->z - b2->z);
  return dsquared <= square(b1->r + b2->r);
}

#include <stdbool.h>
#include <math.h>

typedef struct {
  double x, y, z;  // spatial coordinates
  double r;        // radius of ball
} ball_t;

double square(double x) {
  return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {

if ((abs(b1->x – b2->x) > (b1->r + b2->r)) ||
      (abs(b1->y – b2->y) > (b1->r + b2->r)) ||
      (abs(b1->z – b2->z) > (b1->r + b2->r)))
    return false;
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Short-Circuiting

34

The idea is to stop evaluating as soon as you know 
the answer, when performing a series of tests

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
  int sum = 0;
  for (int i = 0; i < n; i++) {
    sum += A[i];
  }
  return sum > limit;
}
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Short-Circuiting

35

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
  int sum = 0;
  for (int i = 0; i < n; i++) {
    sum += A[i];
  }
  return sum > limit;
}

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
  int sum = 0;
  for (int i = 0; i < n; i++) {
    sum += A[i];
    if (sum > limit) {
      return true;
    }
  }
  return false;
}

Before

After

The idea is to stop evaluating as soon as you know 
the answer, when performing a series of tests
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Ordering Tests

36

Consider code that executes a sequence of logical tests.  
The idea is to perform those that are more often “successful” 
before tests that are rarely successful.

#include <stdbool.h>
bool is_whitespace(char c) {
  return (c == '\r' || c == '\t' || c == ' ' || c == '\n');
}

#include <stdbool.h>
bool is_whitespace(char c) {
  return (c == ' ' || c == '\n' || c == '\t' || c == '\r');
}

Note that && and || are short-circuiting logical operators, 
whereas & and | are not.

Before

After
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Combining Tests

37

The idea is to replace a sequence of tests with one test or switch

void full_add(int a, 
              int b, 
              int c, 
              int *sum, 
              int *carry) {
  if (a == 0) {
    if (b == 0) {
      if (c == 0) {
        *sum = 0;
        *carry = 0;
      } else {
        *sum = 1;
        *carry = 0;
      } 
    } else {
      if (c == 0) {
        *sum = 1;
        *carry = 0;
      } else {
        *sum = 0;
        *carry = 1;
      } 
    }

 } else {
    if (b == 0) {
      if (c == 0) {
        *sum = 1;
        *carry = 0;
      } else {
        *sum = 0;
        *carry = 1;
      } 
    } else {
      if (c == 0) {
        *sum = 0;
        *carry = 1;
      } else {
        *sum = 1;
        *carry = 1;
      } 
    }
  }
}

a b c carry sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full adder
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Combining Tests (2)

38

void full_add(int a, 
              int b, 
              int c, 
              int *sum, 
              int *carry) {
  int test = ((a == 1) << 2) 
             | ((b == 1) << 1) 
             | (c == 1);
  switch(test) {
    case 0:
      *sum = 0;
      *carry = 0;
      break;
    case 1:
      *sum = 1;
      *carry = 0;
      break;
    case 2:
      *sum = 1;
      *carry = 0;
      break;

   case 3:
      *sum = 0;
      *carry = 1;
      break;
    case 4:
      *sum = 1;
      *carry = 0;
      break;
    case 5:
      *sum = 0;
      *carry = 1;
      break;
    case 6:
      *sum = 0;
      *carry = 1;
      break;
    case 7:
      *sum = 1;
      *carry = 1;
      break;
  } 
}

a b c carry sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full adder

In this case, the 
outputs can be 
computed 
mathematically.

The idea is to replace a sequence of tests with one test or switch
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Why Loops?

40

Loops are often the focus of performance optimization.  Why?

Consider this thought experiment:

● Suppose that a 2 GHz processor can execute 1 instruction 
per clock cycle.

● Suppose that a program contains 16 GB of instructions, but 
it is all simple straight-line code, i.e., no backwards branches.

● Question: How long does the code take to run?

Answer: at most 8 seconds!

Loops account for a lot of work!
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What Happens When a Loop Runs?

41

int sum = 0;
for (int i = 0; i < N; i++) {
  sum += A[i];
} 

int sum = 0;
int i = 0;
if (i >= N)
  goto loop_exit;
sum += A[i];
i++;
if (i >= N)
  goto loop_exit;
sum += A[i];
i++;
if (i >= N)
  goto loop_exit;
sum += A[i];
i++;
if (i >= N)
  goto loop_exit;
sum += A[i];
i++;
if (i >= N)
  goto loop_exit;
// ...

A simple loop

Pseudocode for 
loop execution

Loop 
control



© 2008–2024 by the MIT 6.172 and 6.106 Lecturers

Loop Unrolling

42

The idea is to save work by combining consecutive 
iterations of a loop into a single iteration

● Full loop unrolling: All iterations are unrolled.

●Partial loop unrolling: Several, but not all, of the iterations are unrolled.

Loop unrolling reduces the total number of iterations of the loop and, consequently, 
the number of times that the instructions that control the loop must be executed.
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Full Loop Unrolling

43

int sum = 0;
for (int i = 0; i < 10; i++) {
  sum += A[i];
} 

int sum = 0;
sum += A[0];
sum += A[1];
sum += A[2];
sum += A[3];
sum += A[4];
sum += A[5];
sum += A[6];
sum += A[7];
sum += A[8];
sum += A[9];

Before After
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Partial Loop Unrolling

44

int sum = 0;
for (int i = 0; i < n; ++i) { 
  sum += A[i];
}

int sum = 0;
int j;
for (j = 0; j < n-3; j += 4) {
  sum += A[j];
  sum += A[j+1];
  sum += A[j+2];
  sum += A[j+3];
}
for (int i = j; i < n; ++i) {
  sum += A[i];
}

Benefits of loop unrolling
• Fewer instructions devoted to loop control.
• Enables more compiler optimizations.
Caution: Unrolling too much can cause poor use of the 
instruction cache, because the code is bigger.

Before After
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Hoisting
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The idea is to avoid recomputing loop-invariant code each 
time through the body of a loop.

#include <math.h>

void scale(double *X, double *Y, int N) {
  for (int i = 0; i < N; i++) { 
    Y[i] = X[i] * exp(sqrt(M_PI/2));
  }
} #include <math.h>

void scale(double *X, double *Y, int N) {
  double factor = exp(sqrt(M_PI/2));
  for (int i = 0; i < N; i++) { 
    Y[i] = X[i] * factor;
  }
}

Before

After

a.k.a. loop-invariant code motion 
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Hoisting
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#include <math.h>

void scale(double *X, double *Y, int N) {
  for (int i = 0; i < N; i++) { 
    Y[i] = X[i] * exp(sqrt(M_PI/N));
  }
}

Before

The idea is to avoid recomputing loop-invariant code each 
time through the body of a loop.
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Loop Fusion
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The idea is to combine multiple loops over the same index 
range into a single loop body, thereby saving the overhead of 
loop control. a.k.a. Jamming

for (int i = 0; i < n; ++i) { 
  C[i] = (A[i] <= B[i]) ? A[i] : B[i];
}

for (int i = 0; i < n; ++i) { 
  D[i] = (A[i] <= B[i]) ? B[i] : A[i];
}

for (int i = 0; i < n; ++i) { 
  C[i] = (A[i] <= B[i]) ? A[i] : B[i];
  D[i] = (A[i] <= B[i]) ? B[i] : A[i];
}

Before

After

Ternary operator 
for if-else.
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Eliminating Wasted Iterations
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The idea is to modify loop bounds to avoid executing 
loop iterations over essentially empty loop bodies.

for (int i = 0; i < n; ++i) { 
  for (int j = 0; j < n; ++j) {
    if (i > j) {
      int temp = A[i][j];
      A[i][j] = A[j][i];
      A[j][i] = temp;
    }
  }
}

for (int i = 1; i < n; ++i) { 
  for (int j = 0; j < i; ++j) {
      int temp = A[i][j];
      A[i][j] = A[j][i];
      A[j][i] = temp;
  }
}

Before

After
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Inlining

52

The idea is to avoid the overhead of a function call by replacing 
a call to the function with the body of the function itself

double square(double x) {
  return x*x;
}

double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i) {
    sum += square(A[i]);
  }
  return sum;
}

double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i) {
    double temp = A[i];
    sum += temp*temp;
  }
  return sum;
}

Before

After
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Inlining (2)

53

inline double square(double x) {
  return x*x;
}

double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i)
    sum += square(A[i]);
  return sum;
}

Inlined functions can be just as efficient as macros, and they 
are safer to use and better structured.

Ask the compiler 
to inline for you.

The idea is to avoid the overhead of a function call by replacing 
a call to the function with the body of the function itself

__attribute__((always_inline)) 
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Tail-Recursion Elimination
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It is to remove the overhead of a recursive call that occurs as the 
last step of a function.  The call is replaced with a branch to the 
top of the function, and the storage for the local variables of the 
function is reused by the erstwhile recursive call.

void quicksort(int *A, int n) {
  if (n > 1) {
    int r = partition(A, n);
    quicksort (A, r);
    quicksort (A + r + 1, n - r - 1);
  }
} void quicksort(int *A, int n) {

  while (n > 1) {
    int r = partition(A, n);
    quicksort (A, r);
    A += r + 1;
    n -= r + 1;
  }
}

Before

After
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Coarsening Recursion
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The idea is to increase the size of the base case and handle it 
with more efficient code that avoids function-call overhead.

void quicksort(int *A, int n) {
  while (n > 1) {
    int r = partition(A, n);
    quicksort (A, r);
    A += r + 1;
    n -= r + 1;
  }
}

#define THRESHOLD 64
void quicksort(int *A, int n) {
  while (n > THRESHOLD) {
    int r = partition(A, n);
    quicksort (A, r);
    A += r + 1;
    n -= r + 1;
  }
  // insertion sort for small arrays
  for (int j = 1; j < n; ++j) {
    int key = A[j];
    int i = j - 1;
    while (i >= 0 && A[i] > key) {
      A[i+1] = A[i];
      --i;
    }
    A[i+1] = key;
  }
}

Before After
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New Bentley Rules
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Data structures 
● Packing and encoding
● Augmentation 
● Caching 
● Precomputation
● Compile-time initialization

● Sparsity

Loops
● Loop unrolling
● Hoisting
● Loop fusion

● Eliminating wasted iterations

Logic
● Constant folding and propagation
● Common-subexpression elimination
● Algebraic identities
● Creating a fast path
● Short-circuiting

● Ordering tests
● Combining tests

Functions 

● Inlining
● Tail-recursion elimination

● Coarsening recursion
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Closing Advice
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● Avoid premature optimization.  First, get correct working code.   
Then optimize, preserving correctness by regression testing.

● Reducing the work of a program does not necessarily decrease its 
running time, but it is a good heuristic.

● Many optimizations involve tradeoffs.  Use a profiler to see what 
code needs to be optimized.  (See Homework 2.)

● The compiler automates many low-level optimizations, but not all.  

If you find interesting examples of work 
optimization, please let us know!
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