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A Situation

Situation

You and your partner discover a clever algorithm, compiler switch, etc. that
speeds up your code.

Q. Which of the following would you do?

a. Keep It secret so that you can beat the other teams.
b. Publish the idea on Piazza.

Course Policy

1. You are not competing with other teams. The cutoffs for grades are
determined independently of how teams perform.

2. You recelve class-contribution points for sharing ideas and code snippets
on Plazza

3. You may not copy code, but you can take inspiration from each other.
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Work

Definition.
The of a program (on a given input) Is the sum
total of all the operations executed by the program.

The number of
executed Instructions

Avold unnecessary
work
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Reducing Work

e Less work = faster code

e Reducing the work of a program does not automatically reduce its
running time, due to the complex nature of computer hardware:
o Instruction-level parallelism (ILP),
o caching,

o vectorization,
o speculation and branch prediction, etc

e But reducing work i1s a good heuristic for reducing overall exec. time

e Algorithm design can produce dramatic reductions in the work
o e.g. when a O(nlgn)-time sort replaces a ©(n?)-time sort
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Jon Louis Bentley
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New Bentley Rules

Data structures Logic

LBB?%ing and encoding F.uﬁg?ﬁﬁ% folding and propagation
e Augmentation e Common-subexpression elimination
e Caching e Algebraic identities

® Precomputation e Creating a fast path

e Compile-time initialization e Short-circuiting

® Sparsity e Ordering tests

Loops e Combining tests

e Loop unrolling Functions

® Hoisting ® Inlining

e Loop fusion ® Tail-recursion elimination

e Eliminating wasted iterations e Coarsening recursion
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DATA STRUCTURES
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Packing and Encoding

Packing Is to store more than one data value in a machine word.
Encoding Is to convert data Into a representation that requires fewer bits

Example: Encoding dates

e The string “September 3, 2020" can be stored in 17 bytes —
more than two 64-bit words — which must move whenever the
date Is manipulated.

e Assuming that we only store dates between 4096 B.C.E. and 4096
C.E., there are about 365.25 x 8192 = 3 M dates, which can be
encoded in l1g(3x108)| = 22 bits, easily fitting in a 32-bit word.

® Problem: How can we represent dates compactly so that
determining the year, month, and day is fast?
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Packing and Encoding (2)

Example: Packing dates
® [ et us pack the three fields into a word:

typedef struct {
iy edri g 15y
int month: 4;
L dayisr 5
} date_t; 7

e Still only takes 22 bits

e But individual fields can be extracted much more quickly
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Augmentation

The idea Is to add information to a data structure
to make common operations do less work.

Example: Appending one singly linked list to another

head

e \Walk through the first list, and

set Its null pointer to the start L

of the second —> —l>
e Augmenting the list with a head tail
pointer allows appending to | e ]
operate In constant time. |_)
~—> ~—>
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Caching

The idea Is to store results that have been accessed recently
so that the program need not compute them again.

double hypotenuse(double A, double B) { iﬁﬁ?@_
return sqrt(A*A + B*B);

} double cached A =
double cached B =
double cached h =

e \wo

OO0
OO0
o

J

About 30% faster double hypotenuse(double A, double B) {
if cache is hit 2/3 if (A == cached A & & B == cached B) {
. return cached_h;

of the time. )

cached A = A;

cached_B = B;

cached_h = sqrt(A*A + B*B);

return cached h;
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Precomputation

The idea Is to perform calculations in advance so
as to avoid doing them at “mission-critical” times.

Example: Binomial coefficients

W= * Integer overflow for even

n n! * Expensive (lots of multiplications)
( ) kI'(n — k)!

modest values of n and k

ldea: Precompute the table of coefficients when initializing,
and perform table look-up at runtime.
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Step 1: Pascal’s Triangle

1 %] %] %] %) %] %]
1 1 (%] (%] %) (%] (%]
1 2 1 (%] %) %) %)
1 3 3 1 (%] %] (%]
n n!
— ' ' 1 4 6 4 1 %] (%]
K kI (n—k) 1 5 10 18 5 1 0
1 6 15 20 15 6 1
1 7 21 35 35 21 7
NV
ny 1 8 28 56 70 56 28
int choose(int n, int k) {
siE e "<k R Re tl-h YOk
i (= =g GBI REELITRI 3%
return choose(n-1, k-1) + choose(n-1, k);
) 7
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Step 2: Precomputing Pascal

#define CHOOSE SIZE 100
int choose[CHOOSE SIZE][CHOOSE SIZE];

void init choose() {
hoF e EhEE ™ =L 0L W A AGHO QS ERSIRZ E gt Ll
choose[n][0] = 1;
choose[n][n] = 1;
i
FOR RN I =%1 &I CHOOSE " STZE; S Fn)*{
choose[@][n] = ©;

FORMINT Jo&E ki n i rdtksnd
choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
choose[k][n] = ©;

}

}

: 4
Now, whenever we need a binomial coefficient (less than
100), we can simply index the choose array.
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Compile-Time Initialization

The idea Is to store the values of constants during
complilation, saving work at execution time.

Example

int choose[10][10] = {
{ 1) @J @) @) @) @) @) @) @) @) }J
{ 1) 1) @J @) @) 6) @) 6) @) @J })
{ 1.’ 2) 1) @) @) @) @.’ @.’ @J @.’ }.’
{ 1.’ 3) 3) 1) @) @) e) @) @.’ @.’ }J
{ 1) 4J 6) 4) 1) @) @) @) @) @) }J
e "IN 280y 0}, “ELO S Shiel "1UR SN0, 0], TSSO Rl
1" 0, 6%, ~15, 820 , 5] 6, 1 9, 9, gareL)
=%l 75 M2 S B 28 5= 0] 8 7y 1, 9, (= Dt i
o 128 84 280 5618111770, 156, 8y 8, 1 O LN
& A 0, - A36" LISATEN] 26 gl 265 P84 | - 36 5% 0T

}s
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Compile-Time Initialization (2)

ldea: Create large static tables by metaprogramming.

#tdefine N 100
int main(int argc, const char *argv[]) {
init _choose();
printf("#define N %3d\n”, N);
printf("int choose[N][N] = {\n");
for (int a = @; a < N; ++a) {
PrERCRE . i)
for (int b = 0; b < N; ++b) {
pRINtF(E%3d; &% chioosel alifal)s;
}
PEEDERE" TSN 5
}
gl o AN G
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Sparsity

The idea Is to avoid storing and computing on zeroes.

“The fastest way to compute Is not to compute at all.”

Example: Matrix-vector multiplication

( A\ W2
30001 0] 1
® 4 1 05 9| 4
| @ @ 0 2 0 6 || 2
"5 90 3 0 0| 8
5 9 0 0 8 0 || 5
L@ 0 0 9 7 0 )l 7,

Dense matrix-vector multiplication performs n? = 36
scalar multiplies, but only 14 entries are nonzero.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

19



Sparsity

The idea Is to avoid storing and computing on zeroes.

“The fastest way to compute Is not to compute at all.”

Example: Matrix-vector multiplication

( \ [ A
3 1 1
4 1 5 9 || 4
- 2 6 || 2
A 3 8
5 8 5

\ > 7  J)U7)

Dense matrix-vector multiplication performs n? = 36
scalar multiplies, but only 14 entries are nonzero.
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Sparsity (2)
Compressed Sparse Rows (CSR)

e 1 |2 3 4 5 6 7 8 9
rows:[@0 2 6 8 10 11 14]

cols:[0 4

1 2 4 5 5/ ©
vals:[3 1/ 4 1 5 9 2 6 5 3

i b W N RPBP O

LI O L0
®© O O0O0OUVUIOO W
P OO0 0O0O0OR~RO
N O OO0 RLRLO®
w OO WMNOOS
& VLU OO O U R
u OO0 ULWUWOo

Storage is O(n+nnz) instead of n?
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Sparsity (3)

CSR matrix-vector multiplication

typedef struct {
A0t YRS
int *rows; // length n
it €Ol S ; // length nnz
double *vals; // length nnz
} sparse matrix_ t;

void spmv(sparse matrix_t *A, double *x, double *y) {
TOr®eint 1= 05V % A-Snhsit++)~ {
y[i] = @;
for (int k = A->rows[i]; k < A->rows[i+1]; k++) {
Dl =—""A-D aols) ]
y[i] += A->vals[k] * x[]j];
}
}
Y

4

Number of scalar multiplications = nnz, which is

potentially much less than n?.

See the TACO research project if you are interested (https://tensor-compiler.org/)

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Sparsity (3)

CSR matrix-vector multiplication
15

12
9
E
£
= 6
3
0
O N O W O W O WO wOowmowoLwmo wn o uwn
© O O 0 O NKNK O O N M T N O NN o o
i

Density (%)

~—SpMV ——MV

8k x 8k double precision matrix

Number of scalar multiplications = nnz, which is
potentially much less than n?.

See the TACO research project if you are interested (https://tensor-compiler.org/)
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Sparsity (4)

Storing a sparse graph

Vertex ID 0 1 2 3 4

offsets 0 2 5 5 6 7
edges 1 3 2 3 4 2 2

o Many graph algorithms run efficiently on this

representation, e.g., breadth-first search, PageRank.
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Constant Folding and Propagation

The idea of Is to evaluate constant expressions, and substitute
the result into further expressions, all during compilation.

#include <math.h>

void orrery() {
const double radius = 6371000.0;
const double diameter = 2 * radius;
const double circumference = M _PI * diameter;
const double cross area = M PI * radius * radius;
const double surface area =
circumference * diameter;
const double volume =
4 * M PI:*spadius' @ radiust ® radius, / 3%

T,
) 4
With a sufficiently high optimization level, all the expressions
are evaluated at compile-time.

Ihttps://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank Birmingham - object 1956500682.00001(1).jpg
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Common-Subexpression Elimination

The idea Is to avoid computing the same expression multiple times
by evaluating the expression once and saving the result for later use

a=>b+ c; a=>b+ c;
b= - i b ={a - d;
o =""h ERNiC; Q=" gy
d =a d; de =S¥

7 7
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Common-Subexpression Elimination

The idea Is to avoid computing the same expression multiple times by
evaluating the expression once and saving the result for later use

a=>b+ c; a =|b+ c;
b an-  d b a-  d;
Q= h FRECY o=l e
d = a d; O =2 10%

7 7

The third line cannot be replaced by ¢ = a,
because the value of b changes in the second line

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Algebraic Identities

The idea Is to replace expensive algebraic expressions
with algebraic equivalents that require less work

#tinclude <stdbool.h>
#tinclude <math.h>

typedef struct {
double x, y, z; // spatial coordinates
double r; // radius of ball

} ball t;

Expensive

double square(double x) { routine!

return x*x;

}

bool collides(bpfl t *bl, ball t *b2) {
double d = |sgrt|(square(bl->x - b2->x)
+ square(bl->y - b2->y)
+ square(bl->z - b2->z));
return d <= bl->r + b2->r;

) 4
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Algebraic Identities

The idea Is to replace expensive algebraic expressions
with algebraic equivalents that require less work

#tinclude <stdbool.h>
#include <math.h> \/G < v exaCtIy whenu < v?

typedef struct {
double x, y, z; // spatial coordinates
double r; [LAradBus Gow s i
} ball t;

bool collides(ball t *bl, ball t *b2) {
double dsquared = square(bl->x - b2->x)

+ square(bl->y - b2->
double square(double x) { + sguare§b1—>z 3 b2—>§§'
PeTURRSEX: ,

} return dsquared <= |square((bl->r + b2->r);

: 7

bool collides(ball t *bl, ball t *b2) {
double d = |sgrti(square(bl->x - b2->x)

+ square(bl->y - b2->y) Caution: Be careful
+ square(bl->zw-*b2->z)); : : ,
REBURTL, [l 9= R0 1408 % "HP =90 5 with floatlng pOIﬂt!

} 4

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers




Creating a Fast Path

##include <stdbool.h>
#tinclude <math.h>

typedef struct {
double x, y, z; // spatial coordinates
double r; // radius of ball

} ball t;

double square(double x) {
return x*x;

}

bool collides(ball t *bl, ball t *b2) {
double dsquared = square(bl->x - b2->x)
+ square(bl->y - b2->y)
+ square(bl->z - b2->z);

return dsquared <= square(bl->r + b2->r);

) 4
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Creating a Fast Path

#include <stdbool.h>
#include <math.h>

typedef struct {

double x, y, z; // spatial coordinates
double r; // radius of ball

} ball t;

double square(double x) {
return x*x;

}

bool collides(ball t *bl, ball t *b2) {
double dsquared = square(bl->x - b2->x)
+ square(bl->y - b2->y)

+ square(bl->z - b2->z);
return dsquared <= square(bl->r + b2->r);

¥
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Creating a Fast Path

##include <stdbool.h>
#include <math.h>

typedef struct {
double x, y, z; // spatial coordinates
double r; // radius of ball

} ball t;

double square(double x) {
return x*x;

}

bool collides(ball t *bl, ball t *b2) {
if ((abs(bl->x - b2->x) > (bl->r + b2->r)) |
(abs(bl->y - b2->y) > (bl->r + b2->r)) |
(abs(bl->z - b2->z) > (bl->r + b2->r)))
return false;
double dsquared = square(bl->x - b2->x)
+ square(bl->y - b2->y)
+ square(bl->z - b2->z);
return dsquared <= square(bl->r + b2->r); Z;47

¥
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Short-Circuiting

The idea Is to stop evaluating as soon as you know
the answer, when performing a series of tests

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
int sum = 0;
CORMCINIREAT" 0 I8 R, S ) e
sum += A[i];
}

return sum > limit;

¥
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Short-Circuiting

The idea Is to stop evaluating as soon as you know
the answer, when performing a series of tests

##tinclude <stdbool.h>

int sum = 0;

sum += A[i];

¥

return sum > limit;

// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {

CORMCINIREAT" 0 I8 R, S ) e

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

#include <stdbool.h> | After
// All elements of A are nonnegative |
bool sum_exceeds(int *A, int n, int limit) {
int sum = 0;
FORN( IATIAS" Q) A% ~n ) o
sum += A[i];
i (SEme > ERRLE) J
return true;

}

}

return false;

J 7

35



Ordering Tests

Consider code that executes a sequence of logical tests.
The idea Is to perform those that are more often “successful”

before tests that are rarely successful.

#include <stdbool.h> iﬁgﬁ{g
bool is whitespace(char c) {
refukng(ic TR\ R IRl c =W i (MERGNE=IENNE I LN -

; 7
#include <stdbool.h> Lfﬁgﬂ_
bool is whitespace(char c) {

retuRns (ICSEE R R = s e == TR el r@as== "WER) ;

J I

Note that && and || are short-circuiting logical operators,
whereas & and | are not.
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Combining Tests

The idea Is to replace a sequence of tests with one test or switch

void full add(int a, } else {
Full adder int b, if (b == 0) {
T ey if (c == 09) {
int *sun, *sun = 1}
int *carry) { ®carny” = 9;
O 0 O 0 0 if (a == 0) { } else {
Ilbas=0 )™ § *sum = 0;
SR ’ 5 TR =5..0)a" *carry = 1;
O 1 O 0 1 *sum = 0;
*carry = 9; } else {
0O 1 1 1 0 R TE s " et
1 0 O 0 1 *sum = 1; *sum = 0;
*carry = 0; Bcarnys =1,
1 0 1 1 0 } } else {
1 1 0 1 0 ieilser *sum = 1;
e == 0. e FRY, =l
SR I 1 1 *sum = 1; }
*carry = 0; }
e l'sesy }
*sum = 0; }
Ecarryr=""1,
} 4
}
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The idea Is to replace a sequence of tests with one test or switch

Full adder
O 0 O 0
0O 0 1 0
O 1 O 0
O 1 1 1
1 0 O 0
1 0 1 1
1 1 O 1
S I 1

b O ©O - O + Bk O

Combining Tests (2)

In this case, the
outputs can be
computed

mathematically.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

void full add(int
int
int
int
int
int test = ((a
R (b
[P
switch(test) {
case 0O:
SN =%
*carry = 0;
break;
case 1:
*sum = 1;
*carry = 0;
break;
case 2:
Hslimg="5
¥carry, =.0;
break;

a)

b,

C)

*sum,
*carry) {

=="5[8} < < DY

E= <Al
== 1);

case 3:
*sum = 0;
secarry =#i;
break;

case 4:
ES U™ ==
kearry i= 0
break;

case 5:
*sum = 0;
*carry = 1;
break;

case 6:
TSUMe=1o ;
*carry = 1;
break;

case 7:
NSl 1%
*carry = 1;
break;
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Why Loops?

Loops are often the focus of performance optimization. Why?

[ Loops account for a lot of work! }

Consider this thought experiment:

® Suppose that a 2 GHz processor can execute 1 instruction
per clock cycle.

® Suppose that a program contains 16 GB of instructions, but

It 1s all simple straight-line code, I.e., no backwards branches.

® Question: How long does the code take to run?

[ Answer: at most 8 seconds! }

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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What Happens When a Loop Runs?

Pseudocode for | " " =
loop execution |if (i >= N)
goto loop exit;
sum += A[i];
i++;
. s> =N
A Slmple IOOp gc()to loop))_exit;
int sum = 0; sum += A[i];
for (int i = 0; 1 < N; i+4H) { i++;
sum += A[i]; il RS =5 )
} goto loop exit;
‘K--\\\ # sum += A[i];
i++;
Loop if (i >= N)
control goto loop_exit;
sum += A[i];
i++;
s @S
goto loop exit;
| . 7
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Loop Unrolling

The 1dea Is to save work by combining consecutive
iterations of a loop Into a single iteration

e Full loop unrolling: All iterations are unrolled.

e Partial loop unrolling: Several, but not all, of the iterations are unrolled.

Loop unrolling reduces the total number of iterations of the loop and, consequently,
the number of times that the instructions that control the loop must be executed.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Full Loop Unrolling

Nt SuUm=:0 ; i?@?@-

FoRe @NT™ 5 =05, 14" 108 Y 158k |
sum += A[i];

} 7

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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sum
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sum
sum
sum
sum
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sum
sum
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Partial Loop Unrolling

sum += A[1i];

Before

Benefits of loop unrolling

int sum

=m0 After

e
HOER(IES

85 J < n-3; j.+= 4)

sum +=
sum +=
sum +=
sum +=
}
for (int
sum +=

}

AlJl;

A[J+1];
A[j+2];
A[j+3];

= S T < M
Ali];

7

* Fewer instructions devoted to loop control.

* Enables more compiler optimizations.

Caution: Unrolling too much can cause poor use of the
Instruction cache, because the code Is bigger.

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers
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Hoisting

The idea Is to avoid recomputing loop-invariant code each
time through the body of a loop.

##tinclude <math.h> Before

void scale(double *X, double *Y, int N) {
o (TNt Jaa=, 0;rl ® Ny " dF+). f
YIFL ]« =1 X RED Cs GIEESERITRISL20FY 5

}
} #include <math.h> | After

void scale(double *X, double *Y, int N) {
double factor = exp(sqrt(M PI/2))}
FOR( IATSIAS" @) A%< NS ) o

Y RLl =2 i ] FeFaGReO S
}
}
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Hoisting

The idea Is to avoid recomputing loop-invariant code each
time through the body of a loop.

#include <math.h> Before
void scale(double *X, double *Y, int N) {
fraps "(T it e =, Orrsic. =Ny ' 3eF+). +{
Y[i] = X[i] *|exp(sqrt(M_PI/N));
}
}
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Loop Fusion

The idea Is to combine multiple loops over the same index
range Into a single loop body, thereby saving the overhead of
loop control. a.k.a. Jamming

For S (Lae iy, =%0; 1 @njn+ i) | ' Before

C[i] = (A[i] <= B[i]) [?|A[i]|:|B[1i];

} )

Ternary operator

ORIt sl =" OF ghifec AN eer 1 1] for if-else

D[i] = (A[i] <= B[1]) ? B[i] : A[i]; y
! 7
Tor' s (LmE iy =0, "1 NS+, Lﬁﬁ@;
@[ i3 CATNPR=RET T 9 YR~ s 1 - BT s

D[i] = (A[i].<= B[i]) ? B[i] :VA[i];

¥
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Eliminating Wasted lterations

The idea Is to modify loop bounds to avoid executing
loop iterations over essentially empty loop bodies.

¥

o CINTE- T IV=10 ;1" "< “h ) 4
i =5 |

¥
}

int temp = A[1i][j];

A[1][7]
AL3][4]

ALJI0LT5
temp;

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

FOr T (LRt N0, - et ). f - e Afer ]
O R IE Y =NeJF S N6
int temp = A[1i][3];
A[1][J] = A[J][1];
A[J][1i] = temp;
}
¥ 7
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Inlining

The idea Is to avoid the overhead of a function call by replacing
a call to the function with the body of the function itself

double square(double x) { i?ﬁ?@_
ReBUr N> s;

}

double sum_of squares(double *A, int n) {
double sum = 0.9;
for "Crniti . SOk " TR Sn- i) '
sum += |square(A[i]);

}

Lot double sum = 00y T Ve e P (R o WP

} 0T S@inte 2% wOhs 1O =2 o {
double |temp = A[i]|;
sum += |temp*temp|;

¥

return sum;
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Inlining (2)

The idea Is to avoid the overhead of a function call by replacing
a call to the function with the body of the function itself

4 ) inline| double square(double x) {
Ask the compiler RE QLS

to inline for you. g

\ 4 double sum_of squares(double *A, int n) {
double sum = 0.0;
[___attribute__((always_inline)) ] for (int 1 =0; i g Lyl
sum += square(A[i]);

return sum;

} 7

Inlined functions can be just as efficient as macros, and they
are safer to use and better structured.
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Tail-Recursion Elimination

It Is to remove the overhead of a recursive call that occurs as the
last step of a function. The call is replaced with a branch to the
top of the function, and the storage for the local variables of the
function Is reused by the erstwhile recursive call.

void quicksort(int *A, int n) { | Before
ikE atn )5
i MO S Rt St (0 =T
quickson® (AL );

[T € o e W 0 O 5 G Ny N

} void quicksort(int *A, int n) { Lfﬁﬁ;
while (n > 1)| {
1TERr = 2partiition(A,=N)s
quiclesorn® (A% 4r )5

A+=1r + 1;
n -=r + 1;
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Coarsening Recursion

The idea Is to Increase the size of the base case and handle it
with more efficient code that avoids function-call overhead.

_________

while [(n > 1)|{
I = peENTLONGAS 1) ;
guidkSorts C(AS . r)5
A+=1r + 1;
n -=r + 1;

}

i

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

#define THRESHOLD 64 | After
viosd: - quitcles ot TmE -* A, TR 1

________

while [(n > THRESHOLD)| {
J nikr=-par ti Tioni@a,nds
quicksort .(A, "r);
A+=1r + 1;
n -=r + 1;

}

// insertion sort for small arrays
T ot @it =TS gl W0t ot Y A
int key = A[j];
n 1] 7 e M | L N I
while (i >= 0 && A[i] > key) {
A[i+1l] = A[i];
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New Bentley Rules

Data structures

e Packing and encoding

e Augmentation

e Caching

e Precomputation

e Compile-time initialization
® Sparsity

Loops

® [ oop unrolling

® Hoisting

e Loop fusion

e Eliminating wasted iterations

© 2008-2024 by the MIT 6.172 and 6.106 Lecturers

Logic
e Constant folding and propagation
e Common-subexpression elimination
e Algebraic identities
e Creating a fast path
e Short-circuiting
e Ordering tests
e Combining tests

Functions

® Inlining

® Tail-recursion elimination
e Coarsening recursion

of



Closing Advice

e Avoid premature optimization. First, get correct working code.
Then optimize, preserving correctness by regression testing.

e Reducing the work of a program does not necessarily decrease Its
running time, but it iIs a good heuristic.

e Many optimizations involve tradeoffs. Use a profiler to see what
code needs to be optimized. (See Homework 2.)

e The compiler automates many low-level optimizations, but not all.

It you find interesting examples of work
optimization, please let us know!
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